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PEEFACE. .

In Marcli 1879 Clifford died at Madeira j six years

afterwards a posthumous work is for the first time

placed before the public. Some explanation of this

delay must be attempted in the present preface.'

The original work as planned by Clifford was to

have been entitled The First Principles of the Mathe-

matical Sciences Explained to the Non-Mathematical, and

to have contained six chapters, on Number, Space,

Quantity, Position, Motion, and Mass respectively. Of

the projected work Clifford in the year 1875 dictated

the chapters on Number ,
and Space completely, the

first portion of the chapter on Quantity, and somewhat

later nearly the entire chapter on Motion. The first

two chapters were afterwards seen by him in proof, but

never finally revised. Shortly before his death he ex-

pressed a wish that the book should only be published

' A still mbre serious delay seems likely to attend the puWieafion of

the second and concluding part (Kinetic) of Clifford's Elements of Dynamic,

the manuscript of which was left in a completed state. I venture td

think the delay a calamity to the mathematical world.



VI PEEPACE.

after very careful revision, and that its title should be

changed to The Common Sense of the Exact Sciences.

Upon Clififbrd's death the labour of revision and

completion was entrusted to Mr. E. C. Eowe, then

Professor of Pure Mathematics at University College,

London. That Professor Eowe fully appreciated the

difficulty and at the same time the importance of the

task he had undertaken is very amply evidenced by the

time and care he devoted to the matter. Had he lived

to complete the labour of editing, the work as a whole

would have undoubtedly been better and more worthy

of Clifford than it at present stands. On the sad death

of Professor Eowe, in October 1884, 1 was requested by

Messrs. Kegan Paul, Trench, & Co. to take up the

task of editing, thus left incomplete. It was with no

light heart, but with a grave sense of responsibility that

I undertook to see through the press the labour of two

men for whom I held the highest scientific admiration

and personal respect. The reader will perhaps appre-

ciate my difficulties better when I mention the exact

state of the work when it came into my hands.

Chapters I. and IL, /Space and Number ; half of Chapter

III., Quantity (then erroneously termed Chapter IV.)

;

and Chapter V., Motion, were in proof. With these

proofs I had only some half-dozen pages of the

corresponding manuscript, all the rest having un-
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fortunately been considered of no further use, and

accordingly destroyed. How far the contents of the

later proofs may have represented what Clifford dictated

I" have had no means of judging except from the few

pages of manuscript in my possession. In revising the

proofs of the first two chapters, which ClifiFord himself

had seen, I have made as little alteration as possible,

only adding an occasional foot-note where it seemed

necessary. From page 65 onwards, however, I am,

with three exceptions in Chapter V., responsible for

all the figures in the book.

After examining the work as it was placed in my

hands, and consulting Mrs. Clifford, I came to the

conclusion that the chapter on Quantity had been

misplaced, and that the real gaps in the work were from

the middle of Chapter III. to Chapter V., and again at

the end of Chapter V. As to the manner in which

these gaps were to be filled I had no definite information

whatever ; only after my work had been completed was

an early plan of Clifford's for the book discovered. It

came too late to be of use, but it at least confirmed our

rearrangement of the chapters.

Tor the latter half of Chapter III. and for the whole

of Chapter IV. (pp. 116-226) I am alone responsible.

Yet whatever there is in them of value I owe to Clifford

;

whatever is feeble or obscure is my own.
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With Chapter V. my task has been by no means

light. It was written at a time when Clifford was

much occupied with his theory of ' Graphs,' and found

it impossible to concentrate his mind on anything else :

parts of it are clear and succinct, parts were such

as the author would never have allowed to go to

press. I felt it impossible to rewrite the whole without

depriving the work of its right to be called Clifford's,

and yet at the same time it was absolutely necessary

to make considerable changes. Hence it is that my

revision of this chapter has been much more extensive

than in the case of the first two. With the result I

fear many will be dissatisfied; they will, however, hardly

be more conscious of its deficiencies than I am. I can

but plead the conditions under which I have had to

work. One word more as to this chapter. Without

any notice of mass or force it seemed impossible to close

a discussion on motion; something I felt must be added.

I have accordingly introduced a few pages on the laws

of motion. I have since found that Clifford intended,

to write a concluding chapter on mass. How to express

the laws of motion in a form of which Clifford would

have approved was indeed an insoluble riddle to me,

because I was unaware of his having written anytliino-

on the subject. I have accordingly expressed, although

with great hesitation, my own views on the subject;
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these may be concisely described as a strong desire to

see the terms matter and force, together with the ideas

associated with them, entirely removed from scientific

terminology—to reduce, in, fact, all dynamic to kine-

matic. I should hardly have ventured to put forward

these views had I not recently discovered that they have

(allowing for certain minor differences) the weighty

authority of Professor Mach, of Prag.' But since writing

these pages I have also been referred to a discourse

delivered by Clifford at the Eoyal Institution in 1873,

some account of which appeared in Nature, June 10,

1880. Therein it is stated that 'no mathematician

can give any meaning to the language about matter,

force, inertia used in cuiTent text-books of mechanics.' ^

This fragmentary account of the discourse undoubtedly

proves that Clifford held on the categories of matter

and force as clear and original ideas as on all subjects

of which he has treated; only, alas! they have not

been preserved.

In conclusion I must thank those friends who have

been ever ready with assistance and advice. Without

their aid I could not have accomplished the little that

• See his recent book, Bie Mechanik in ihrer EntwicTcelung. Leipzig,

1883.

^ Mr. E. Tucker, 'who has kindly searched ClifFord's note-hooks for

anything on the subject, sends me a slip of paper Tvith the following

words in Clifford's handwriting :
' Force is not a fact at all, but an idea

embodying what is approximately the fact.'



X PREFACE.

has been done. My sole desire has been to give to the

public as soon as possible another work of one whose

memory will be revered by all who have felt the

invigorating influence of his thought. Had this work

been published as a fragment, even as many of us

wished, it would never have reached those for whom

Clifford had intended it. Completed by another hand,

we can only hope that it will perform some, if but a

small part, of the service which it would undoubtedly

have fulfilled had the master lived to put it forth.

K. r.
Uniteesitt College, London:

February 26.
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THE

COMMON SENSE
OF THE

EXACT SCIENCES.

CHAPTEE I.

NtTMBEK.

§ 1, Number is Independent of the order of Counting.

The word which stands at the head of this chapter

contains six letters. In order to find out that there

are six, we count them ; n one, u two, w three, i four,

e five, r six. In this process we have taken tlie letters

one by one, and have put beside them six words which

are the first six out of a series of words that we always

carry aboutwith us, the names ofnumbers. Afterputting

these six words one to each of the letters of the word

number, we found that the last of the words was six ; and
accordingly we called that set of letters by the napae six.

If we counted, the letters in the word ' chapter ' in

the same way, we should find that the last of the

numeral words thus used would be seven; and accor-

dingly we say that there are seven letters.

But now a question arises. Let us suppose that the

letters of the word number are printed upon separate
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small pieces of wood belonging to a box of letters ;
tbat

we put these into a bag and shake them up and bring

them out, putting them down in any other order, and

then count them again ; we shall still find that there

are six of tbem. For example, if they come out in

the alphabetical order b e mnr u, and we put to each

of these one of the names of numbers that we have

before used, we shall still find that the last name will

be six. In the assertion that any group of things con-

sists of six things, it is implied that the word six will

be the last of the ordinal words used, in whatever

order we take up this group of things to count them.

That is to say, the number of any set of things is the

same in whatever order we count them.

Upon this fact, which we have observed with regard

to the particular number six, and which is true of all

numbers whatever, the whole of the science of number

is based. We shall now go on to examine some

theorems about numbers which may be deduced from it.

§2.4 Sum is Independent of the order of Adding.

Suppose that we have two groups of things ; say the

letters in the word ' number,' and the letters in the

word * chapter,' We may count these groups separately,

and find that they come respectively to the numbers
six and seven. We may then put them all together, and
we find in this case that the aggregate group which is

so formed consists of thirteen letters.

Now this operation of putting the things all together
may be conceived as taking place in two different ways.
We may first of all take the six things and put them in
a heap, and then we may add the seven things to them
one by one. The process of counting, if it is performed
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in this order, amounts to counting seven more ordinal

words after the word six. We may however take the

seven things first and put them into a heap, and then

add the six things one by one to them. In this case the

process of counting amounts to counting six more

ordinal words after'the word seven.

But from what we observed before, that if we count

any set of things we cotoe to the same number in what-

ever order we count them, it follows that the number

we arrive at, as belonging to the whole group of things,

must be the same whichever of these two processes we
use. This number is called the sum ofthe two numbers

6 and 7 ; and, as we have seen, we may arrive at it either

by the first process of adding 7 to 6, or by the second

process of adding 6 to 7.

The process of adding 7 to 6 is denoted by a short-

hand symbol, which was first used by Leonardo da Vinci.

A little Maltese cross (+ ) stands for the Latin plus,

or the English increased by. Thus the words six increased

hy seven are written in shorthand 6 + 7. Now we
have arrived at the result that six increased hy seven is

the same number as seven increased by six. To write this

wholly in shorthand, we require a symbol for the words,

is the same number as. The symbol for these is = ; it was

first used by an Englishman, Robert Eecorde. Our
result then may be finally written in this way :

—

6 + 7 = 7 + 6.

The proposition which • we have written in this

symbolic form states that the sum of two numbers 6

and 7 is independent of the order in which they are

added together. But this remark which we have made
about two particular numbers is equally true of any

two numbers whatever, in consequence of our funda-
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mental assumption that the number of things in any

group is independent of the order in which we count

them. For by the sum of any two numbers we mean

a number which is arrived at by taking a group of

things containing the first number of individuals, and

adding to them one by one another group of things

containing the second number of individuals ; or, if we

like, by taking a group of things containing the second

number of individuals, and adding to them one by one

the group of things containing the first number of

individuals. Now, in virtue of our fundamental

assumption, the results of these two operations must be

the same. Thus we have a right to say, not only that

6 + 7 = 7 + 6, but also that 6 + 13 = 13 + 5, and

so on, whatever two numbers we like to take.

This we may represent by a method which is due to

Vieta, viz., by denoting each number by a letter of the

alphabet. If we write a in place of the first number
in either of these two cases, or in any other case, and 6

in place of the second number, then our formula will

stand thus :

—

a + h = b + a.

By means of this representation we have made a
statement which is not about two numbers in particu-

• lar, but about all numbers whatever. The letters a and
h so used are something like the names which we give
to things, for example, the name horse. When we say
a horse has four legs, the statement will do for any
particular horse whatever. It says of that particular
horse that it has four legs. If we said ' a horse has as
many legs as an ass,' we should not be speaking of any
particular horse or of any particular ass, but of any
horse whatever and of any ass whatever. Just in the
same way, when we assert that a + b = h + a,yfe are
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not speaking of any two particular numbers, but of all

numbers whatever.

We may extend this rule to more numbers than

two. Suppose we add to the sum a + b a third

number, c, then we shall have an aggregate group of

things which is formed by putting together three groups,

and the number of the aggregate group is got by adding

together the numbers of the three separate groups. This

number, in virtue of our fundamental assumption, is

the same in whatever order we add the three groups

together, because it is always the same set of things

that is counted. Whether we take the group of a

things first, and then add the group of h things to it

one by one, and then to this compound group of a + 6

things add the group of c things one by one; or

whether we take the group of c things, and add to it

the group of b things, and then to the compound group

of c + 6 things add the group of a things, the sum
must in both cases be the same. We may write this

result in the symbolic form a+b + c = c + b + a, or

we may state in words that the sum of three numbers is

independent of the order in which they are added together.

This rule may be extended to the case of any

number of numbers. However many groups of things

we have, if we put them all together, the number of'

things in the resulting aggregate group may be counted

in various ways. We may start with counting any one

of the original groups, then we may follow it with any

one of the others, following these by any one of those

left, and so on. In whatever order we have taken these

groups, the ultimate process is that of counting the

whole aggregate group of things ; and consequently

the numbers that we arrive at in these different ways
must all be the same.
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§ 3. ^ Product is Independent of the order of Multiplymg.

Now let us suppose that we take six groups of

things vyhich all contain the same number, say 5, and

that we want to count the aggregate group which is

made by putting all these together. We may count

the six groups of five things one after another, which

amounts to the same thing as adding 5 five times over

to 5. Or if we like we may simply mix up the whole

of the six groups, and count them without reference to

their previous grouping. But it is convenient in this

case to consider the six groups of five things as arranged

in a particular way.

Let us suppose that all these things are dots which

are made upon paper, that every group of five things is

five dots arranged in a horizontal line, and that the

six groups are placed vertically under one another as in

the figure.
o • e o •

We then have the whole of the dots of these six
groups arranged in. the form of an oblong which con-
tains six rows of five dots each. Under each of the five

dots belonging to the top group there are five other dots
belonging to the remaining groups ; that is to say, we
have not only six rows containing five dots each, but five

columns containing six dots each. Thus the whole set
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of dots can be arranged in five groups of six each, just

as well as in six groups of five each. The whole number

of things contained in six groups of five each, is called

six times five. We learn in this way therefore that

six times five is the same number as five times six.

As before, the remark that we have here made about

two particular numbers may be extended to the case of

any two numbers whatever. If we take any number of

groups of dots, containing all of them the same number
of dots, and arrange these as horizontal lines one under

the other, then the dots will be arranged not only in

lines but in columns ; and the number of dots in every

column will obviously be the same as the number of

groups, while the number of columns will be equal to

the number of dots in each group. Consequently the

number of things in a groups of 6 things each is equal

to the number of things in b groups of a things each,

no matter what the numbers a and 6 are.

The number of things in a groups of h things each

is called a times & ; and we learn in this way that a

times h is equal to 6 times a. The number a times h

is denoted by writing the two letters a and 6 together,

a coming first
;
^lie^hat we may express our result in the

symbolic form dh=-T[)a.

Suppose now that we put together seven such com-

pound groups arranged in the form of an oblong like

that we constructed just now. They cannot now be repre-

sented on one sheet of paper, but we may suppose that

instead of dots we have little cubes which can be put

into an oblong box. On the floor of the box we shall

have six rows of five cubes each, or five columns of six

cubes each ; and there will be seven such layers, one on

•the top of another. Upon every cube therefore which

is in the bottom of the box there will be a pile of six

2
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cubes, and we shall have altogether five times six such

piles. That is to say, vire have five times six groups of

seven cubes each, as well as seven groups of five times

six cubes each. The whole number of cubes is indepen-

dent of the order in which they are counted, and con-

sequently we may say that seven times five times six is

the same thing as five times six times seven.

But it is here very important to notice that when we

say seven times five times six, what we mean is that

seven layers have been formed, each of which contains

five times six things; but when we say five_ times six

times seven, we mean that five times six columns have

been formed, each of which contains seven things.

Here it is clear that in the one case we have first multi-

plied the last two numbers, and then multiplied the result

bythe first mentioned (seven times five times six = seven

times thirty), while in the other case it is the first two
numbers mentioned that are multiplied together, and

then the third multiplied by the result (five times six

times seven= thirty times seven). Now it is quite

evident that when the box is full of these cubes it may
be set upon any side or upon any end ; and in all cases

there will be a number of layers of cubes, either 5 or 6

or 7. And whatever is the number of layers of cubes,

that wiU also be the number of cubes in each pile.

Whether- therefore we take seven layers containing

five times six cubes each, or six layers containing
seven times five cubes each, or five layers containing six

times seven cubes each, it comes to exactly the same
thing.

We may denote five times six by the symbol 5x6, and
then we may write five times six times seven, 5x6x7.

But now this form does not tell us whether we
are to multiply together 6 and 7 first, and then take 5
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times the result, or whetlicr we are to multiply 5 and 6

first, and take that numher of sevens. The distinction

between these two operations may" be pointed out by

means of parentheses or brackets ; thus, 5 x (6 x 7)

means that the 6 and 7 must be first multiplied to-

gether and 5 times the result taken, while (5 x 6) x 7

means that we are to multiply 5 and 6 and then take

the resulting number of sevens.

We may now state two facts that we have learned

about multiplication.

First, that the brackets make no difference in the

result, although they, do make a difference in the pro-

cess by which the result is attained; that is to say,

5x(6x7) = (5x6)x7.
Secondly, that the product of these three numbers

is independent of the order in which they are multi-

plied together.

The first of these statements is called the associa-

tive law of multiplication, and the second the commuta-

tive law.

Now these remarks that we have made about the

result of multiplying together the particular three

numbers, 5, 6, and 7, are equally applicable to any

three numbers whatever.

We may always suppose a box to be made whose

height, length, and breadth will hold any three num-
bers of cubes. In that case the whole number of

cubes will clearly be independent of the position of the

box ; but however the box is set down it will contain a

certain number of layers, each layer containing a cer-

tain number of rows, and each row containing a certain

number of cubes. The whole number of cubes in the

box will then be the product of these three numbers

;

and it will be got at by taking any two of the three



10 THE COMMON SENSE OF THE EXACT SCIENCES.

numbers, multiplying them together, and then multi-

plying the result by the third number.

This property of any three numbers whatever may

now be stated symbolically.

In the first place it is true that a{hc) = {ab)c; that

is, it comes to the same thing whether we multiply the

product of the second and third numbers by the first,

or the third number by the product of the first and

second.

In the next place it is true that abc= acb= hca, &c.,

and we may say that the product of any three numbers

is independent of the order and of the mode of group-

ing in which the multiplications are performed.

We have thus made some similar statements about

two numbers and three numbers respectively. This

naturally suggests to us that we should inquii-e if cor-

responding statements can be made about four or five

numbers, and so on.

We have arrived at these two statements by con-

sidering the whole group of things to be counted as

arranged in a layer and in a box respectively. Can
we go any further, and so arrange a number of boxes as

to exhibit in this way the product of four numbers?
It is pretty clear that we cannot.

Let us therefore now see if we can find any other

sort of reason for believing that what we have seen to

be true in the case of three numbers—viz., that the re-

sult of multiplying them together is independent of
the order of multiplying—is also true of four or more
numbers.

In the first place we wiU show that it is possible to
interchange the order of a pair of these numbers which
are next to one another in the process of multiplying,
without altering the product.
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Consider, for example, the product of four numbers,

abed. We will endeavour to show that this is the same

thing as the product acbd. The sjonbol abed means

that we are to take c groups of d things and then b

groups like the aggregate so formed, and then finally a

groups of bed things.

Now, by what we have already proved, b groups of

cd things come to the same number as c groups of bd

things. Consequently, a groups of bed things are the

same as a groups of cbd things ; that is to say, abcd=

acbd.

It will be quite clear that this reasoning will hold

no matter how many letters come after d. Suppose,

for example, that we have a product of six numbers

abcdef. This means that we are to multiply/ by e, the

result by d, then def by c, and so on.

How in this case the product def simply takes the

place which the number d had before. And b groups of

c times def things come to the same number as c groups

of b times de/"things, for this is only the product of three

numbers, b, c, and def. Since then this result is the

same in whatever order b and c are written, there can

be no alteration made by multiplications coming after,

that is to say if we have to multiply by ever so

many more numbers after multiplying by a. It follows

therefore that no matter how many numbers are multi-

plied together, we may change the places of any two of

them which are close together without altering the

product.

In the next place let us prove that we may change

the places of any two which are not close together.

For example, that abedef is the same thing as aeedbf,

where b and e have been interchanged. We may do
this by first making the e march backwards, changing



12 THE COMMON SEJ^SE OF THE EXACT SCIENCES.

places successively with d and c and b, when the

product is changed into aebcdf; and then making b

march forwards so as to change places successively with

c and d, whereby we have now got e into the place of b.

Lastly, I say that by such interchanges as these

we can produce any alteration in the order that we like.

Suppose for example that I want to change abcdef into

dcfbea. Here I will first get d to the beginning; I

therefore interchange it with a, producing dbcaef.

Next, I must get c second ; I do this by interchanging

it with b, this gives dcbaef. I must now put / third

by interchanging it with b, giving dcfaeb, next put b

fourth by interchanging it with a, producing dcfbea.

This is the form required. By five such interchanges

at most, I can alter the order of six letters in any

way I please. It has now been proved that this alter-

ation in the order may be produced by successive in-

terchanges of two letters which are close together.

But these interchanges, as we have before shown, do

not alter the product ; consequently the product of six

numbers in any order is equal to the product of the

same six numbers in any other order ; and it is easy to

see how the same process wUl apply to any number of

numbers.

But is not all this a great deal of trouble for the

sake of proving what we might have guessed before-

hand ? It is true we might have guessed beforehand

that a product was independent of the order and group-
ing of its factors ; and we might have done good work
by developing the consequences of this guess before we
were quite sure that it was true. Many beautiful

theorems have been guessed and widely used be-

fore they were conclusively proved; there are some
even now in that state. But at some time or other the
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inquiry has to be undertaken, and it always clears up

our ideas about tbe nature of the theorem, besides

giving us the right to say that it is true. And this is not

all ; for in most cases the same mode of proof or of in-

vestigation can be applied to other subjects in such a

way as to increase our knowledge. This happens with

the proof we have just gone through ; but at present, as

we have only numbers to deal with, we can only go

backwards and not forwards in its application. We
have been reasoning about multiplication ; let us see if

the same reasoning can be applied to addition.

What we have proved amounts to this. A certain

result has been got out of certain things by taking

them in a definite order ; and it has been shown that

if we can interchange any two consecutive things without

altering the result, then we may make any change whatever

in the order without altering the result. Let us apply

this to counting. The process of counting consists in

taking certain things in a definite order, and applying

them to our fingers one by one ; the result depends on
the last finger, and its name is called the number of the

things so counted. We learn then that this result will

be independent of the order of counting, provided only

that it remains unaltered when we interchange any two
consecutive things ; that is, provided that two adjacent

fingers can be crossed, so that each rests on the object

previously under the other, without employing any new
fingers or setting free any that are already employed.

With this assumption we can prove that the number of

any set of things is independent of the order ofcounting

;

a statement which,- as we have seen, is the foundation

of the science of number.
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§ 4, The Distributive Law.

There is another law of multiplication which is, if

possible, still more important than the two we have

already considered. Here is a particular case of it:

the number 5 is the sum of 2 and 3, and 4 times 5 is

the sum of 4 times 2 and 4 times 3. We can make this

visible by an arrangement of dots as follows :

—

Here we have four rows of five dots each, and each row is

divided into two parts, containing respectively two dots

and three dots. It is clear that the whole number of

dots may be counted in either of two ways ; as four

rows of five dots, or as four rows of two dots together

with four rows of three dots. By our general principle

the result is independent of the order of counting, and
therefore

4 X 5 = (4 X 2) + (4 X 3)

;

or, if we put in evidence that 5= 2 + 3,

4 (2 + 3) = (4 X 2) + (4 X 3).

The process is clearly applicable to any three num-
bers whatever, and not only to the particular numbers
4, 2, 3. We may construct an oblong containing a rows
of b + c dots ; and this may be divided by a vertical line
into a rows of 6 dots and a rows of c dots. Counted
in one way, the whole number of dots is a{b-^c);
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counted in another way, it is ab + ae. Hence we must

always haye
a (6 + c) = a6 + ac.

This is the first form of the distributive law.

Now the result of multiplication is independent of

the order of the factors, and therefore

a {b + c) = (b + c) a,

ab = ba,

ac = ca;

so that our equation may be written in the form

(b + c) a =^ ha + ca.

This is called the second form of the distributive law.

Using the numbers of our previous example, we say that

since 5 is the sum of 2 and 3, 5 times 4 is the sum of 2

times 4 and 3 times 4. This form may be arrived at in-

dependently and very simply as follows. We know that

2 things and 3 things make 5 things, whatever the things

are ; let each of these things be a group of 4 things

;

then 2 fours and 3 fours make 5 fours, or

(2x4) + (3x4)=5x4.

The rule may now be extended. It is clear that our

oblong may be divided by vertical lines into more parts

than two, and that the same reasoning will apply. This

figure, for example, makes visible the fact that just as

2 and 8 and 4 make 9, so 4 times 2, and 4 times 3, and

4 times 4 make 4 times 9. Or generally

—
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a (b + c + d) = ah + ac + ad,

(b + c + d) a = ba + ca + da;

and tlie same reasoning applies to the addition of any

number of numbers and tbeir subsequent multiplication.

§ 5. Ow Powers.

When a number is multiplied by itself it is said to

be squared. The reason of this is that if we arrange a

number of lines of equally distant dots in an oblong, the

number of lines being equal to the number of dots in

each line, the oblong wUl become a square.

If the square of a number is multiplied by the

number itself, the number is said to be cubed ; because if

we can fill a box with cubes whose height, length, and

breadth are all equal to one another, the shape of the

box will be itself a cube.

If we multiply together four numbers which are all

equal, we get what is called the fourth power of any one

of them ; thus if we multiply 4 3's we get 81, if we
multiply 4 2's we get 16.

If we multiply together any number of equal num-
bers, we get in the same way a power of one of them
which is called its fifth, or sixth, or seventh power, and
so on, according to the number of numbers multiplied

together.

Here is a table of the powers of 2 and 3 :

—
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the statement that ifyou multiply seven threes together

you get 2187, it ia only needful to put down :

—

3^ = 2187.

It is to be observed that every number is its own
first power ; thus 2'= 2, 3'= 3, and in general a*= a.

§ 6. Square ofa+1.

We may illustrate the properties of square numbers

by means of a common arithmetical puzzle, in which

one person teUs the number another has thought of by

means of the result of a round of calculations per-

formed with it.

Think of a number.... say 3

Square it 9

Add 1 to the original number ... 4
Square that 16

Take the difference of the two squares . 7

This last is always an odd number, and the number
thought of is what we may call the less half of it ; viz.,

it is the half of the even number next below it. Thus,

the result being given as 7, we know that the number
thought of was the half of 6, or 3.

We will now proceed to prove this rule. Suppose

that the square of 5 is given us, in the form of twenty-

five dots arranged in a square, how are we to form the

square of 6 from it? We may add five dots on the

right, and then five dots along the bottom, and then

one dot extra in the corner. That is, to get the square

of 6 from the square of 5, we must add one more than

twice 5 to it. Accordingly

—

36 = 25 + 10 + 1.
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And, conversely, the number 5 is the less half of the

difference between its square and the square of 6.

e e o o o o
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The form of this reasoning shows that it holds good

for any number -whatever. Having given a square of

dots, we can make it into a square having one more

dot ia each side by adding a column of dots on the

right, a row of dots at the bottom, and one more dot in

the corner. That is, we must add one more than twice

the number of dots in a side of the original square.

If, therefore, this number is given to us, we have only

to take one from it and divide by 2, to have the num-
ber of dots in the side of the original square.

We will now write down this result in shorthand.

Let a be the original number ; then a+ 1 is the number
next above it; and what we want to say is that the square

of a+ 1, that is {a+l)^, is got from the square of a,

which is a% by adding to it one more than twice a,

that is 2a+ 1. Thus the shorthand expression is

(a + 1) = = a2 + 2a + 1.

This theorem is a particular case of a more general

one. which enables us to find the square of the sum of
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any two numbers in terms of the squares of the two
numbers and their product. We will first illustrate

this by means of the square of 5, which is the sum of

2 and 3.

• o • mo
• e • • •

• • • o •

• • • • •

• e e • •

The square of twenty-five dots is here divided into

two squares asd two oblongs. The squares are respec-

tively the squares of 3 and 2, and each oblong is the

product of 3 and 2. In order to make the square of 3

into the square of 3 + 2, we must add two columns on

the right, two rows at the bottom, and then the square

of 2 in the comer. And in fact, 25= 9 + 2x6 + 4.

§ 7. On Powers of a + b.

To generalise this, suppose that we have a square

with a dots in each side, and we want to increase it to

a square with a+ h dots in each side. We must add 6

columns on the right, b rows at the bottom, and then

the square of b in the corner. But each column and

each row contains a dots. Hence what we have to add

is twice ab together with b^, or in shorthand :

—

(a + by = a" + 2ah + bK

The theorem we previously arrived at may be got from

this by making 6= 1.
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Now this is quite completely and satisfactorily

proved ; nevertheless we are going to prove it again in

another way. The reason is that we want to extend

the proposition still further; we want to find an ex-

pression not only for the square of (a + h), but for any

other power of it, in terms of the powers and products

of powers of a and h. And for this purpose the mode

of proof we have hitherto adopted is unsuitable. We
might, it is true, find the cube of a+ 6 by adding the

proper pieces to the cube of a ; but this would be some-

what cumbrous, while for higher powers no such repre-

sentation can be used. The proof to which we now pro-

ceed depends on the distributive law of multiplication.

According to this law, in fact, we have

(a + b)^ = (a + b) (a + h) = a {a + I) + b(a + b)

= aa + ab + ba + bb

= a^ + 2ab + 6^

It will be instructive to write out this shorthand at

length. The square of the sum of two numbers means
that sum multiplied by itself. But this product is the

first number multiplied by the sum together with the

second number multiplied by the sum. Now the first

number multiplied by the sum is the same as the

first number multiplied by itself together with the first

number multiplied by the second number. And the

second number multiplied by the sum is the same as

the second number multiplied by the first number to-

gether with the second number multiplied by itself.

Putting all these together, we find that the square of
the sum is equal to the sum of the squares of the two
numbers together with twice their product.

Two things may be observed on this comparison.
First, how very much the shorthand expression gains
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in clearness from its brevity. Secondly, tliat it is only

shorthand for something which is just straightforward

common sense and nothing else. We may always

depend upon it that algebra, which cannot be translated

into good English and sound common sense, is bad

algebra.

But now let us put this process into a graphical

shape which will enable us to extend it. We start

with two numbers, a and h, and we are to multiply each

of them by a and also by h, and to add all the results.

a . + 6

/\ /\
aa ha ab hi

Let us put in each case the result of multiplying by a

to the left, and the result of multiplying by h to the

right, under the number multiplied. The process is

then shown in the figure.

If we now want to multiply this by a+ & again, so as

to make (a+ 6)^, we must multiply each part of the

lower line by a, and also by b, and add all the results,

thus :

—

ab bb

y\ y\ y\
aba bba, aab hah abb bib

Here we have eight terms in the result. The first

and last are a* and b^ respectively. Of the remaining

six, three are baa, aba, aab, containing two a's and one

b, and therefore each equal to a% ; and three are bba,

bob, abb, containing one a and two b's, and therefore

each equal to ab^. Thus we have :

—

(a+ 6)» = a^ + da;'b + Sab' + b\
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For exampHtll' = 1331. Here a = 10,1 = 1. and

(10 + l)»=10'+ 3xl0''+ 3xl0 + l,

for it is clear that any power of 1 is 1.

We shall carry this process one

step further, before making remarks

which will enable ns to dispense

with it.

In this case there are sixteen

terms, the first and last being a* and

h* respectively. Of the rest, some

have three a's and one b, some two

a's and two 6's, and some one a and

three &'s. There are four of the

first kind, since the i may come first,

second, thii-d, or fourth; so also

there are four of the third kind, for

the a occurs in each of the same four

places ; the remaining six are of the

second kind. Thus we find that,

{a+ by= a* + 4a3& + 6a^&«+ 4a¥+ 1*.

We might go on with this process

as long as we liked, and we should

get continually larger and larger

trees. But it is easy to see that the

process of classifying and counting
the terms in the last line would
become very troublesome. Let us
then try to save that trouble by
making some remarks upon the
process.

If we go down the tree last
figured, from a to abaa, we shall find that the term
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aiaa is built up from right to left as we descend. The
a that we begin with is the last letter of abda ; then in

descending we move to the right, and put another a

before it ; then we move to the left and put b before

that; lastly we move to the right and put in the

first a. From this there are two conclusions to be

drawn.

First, the terms at the end are all different ; for any

divergence in the path by which we descend the tree

makes a difference in some letter of the result.

Secondly, euery possible arrangement of four letters

which are either a's or b's is 'produced. For if any such

aiTangement be written down, say abah, we have only

to read it backwards, making a mean * turn to the

left ' and b ' turn to the right,' and it will indicate

the path by which we must descend the tree to find

that arrangement at the end.

We may put these two remarks into one by saying

that every such possible arrangement is produced once and

once only.

Now the problem before us was to count the

number of terms which have a certain number of 6's in

them. By the remark just made we have shown that

this is the same thing as to count the number of

possible arrangements having that number of &'s.

Consider for example the terms containing one 6.

When there are three letters to each term, the number
of possible arrangements is 3, for the b may be first,

second, or third, baa, aha, aab. So when there are four

letters the number is 4, for the b may be first, second,

third, or fourth ; baaa, abaa, aaba, aaab. And generally

it is clear that whatever be the number of letters in each

term, that is also the number of places in which the b

can stand. Or, to state the same thing in shorthand.
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if n be the number of letters, there are n terms con-

taining one h. And then, of course, there are n terms

containing one a and all the rest Va.

And these are the terms which come at the beginning

and end of the wth power of a+&; viz. we must have

{a + hf = a^+ na"-^b + other terms + waS*^"' + 6",

The meaning of this shorthand is that we have n

{a + iys multiplied together, and that the result of that

multiplying is the sum of several numbers, four of

which we have written down. The first is the product of

n a's multiplied together, or a" ; the next is n times the

product of & by (w— 1) a's, namely, na''~^b. The last

but one is n times the product of a by («— 1) 6's, namely,

waft""
'

; and the last is the product of n 5's multiplied

together, which is written fe".

The problem that remains is to fill up this state-

ment by finding what the ' other terms ' are, containing

each more than one a and more than one b.

§ 8. On the Number ofArrangements of a Group of Letters.

This problem belongs to a very useful branch of

applied arithmetic called the theory of * permutations

and combinations,' or of arrangement and selection.

The theory tells us how many arrangements may be

made with a given set of things, and how many selec-

tions can be made from them. One of these questions

is made to depend on the other, so that there is an
advantage in counting the number of arrangements
first.

With two letters there are clearly two arrangements,

ab and ba. With three letters there are these six :

abc, acb, bca, bac, cah, cba,
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namely, two with a at the beginning, two with 6 at the

beginning, and two with c at the beginning ; three

times two. It would not be much trouble to write

down all the arrangements that can be made with four

letters ahcd. But we may count the number of them
without taking that trouble ; for if we write d before

each of the six arrangements of ahc, we shall have six

arrangements of the four letters beginning with d,

and these are clearly all the arrangements which can

begin with d.- Similarly, there must be six beginning

with a, six beginning with h, and six beginning with c

;

in all, four times six, or twenty-four.

Let us put these results together

:

With two letters, number of arrangements is two = 2

„ three „ three times two . . = 6

„ four „ four times three times two = 24

Here we have at once a rule suggested. To find the

number of arrangements which can he made with a given

group of letters, multiply together the numbers two, three,

four, &c., up to the number of letters in the group. We
have found this rule to be right for two, three, and

four letters ; is it right for any number whatever of

letters ?

We will consider the next case of five letters, and

deal with it by a method which is applicable to all cases.

Any one of the five letters may be placed first ; there are

then five ways of disposing of the first place. For each

of these ways there are four ways of disposing of the

second place ; namely, any one of the remaining four

letters may be put second. This mates five times four

ways of disposing of the first two places. For each of

these there are three ways of disposing of the third

place, for any one of the remaining three letters may
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be put third. This makes five times four times three

ways of disposing of the first three places. For each

of these there are two ways of disposing of the last

two places; in all, five times four times three times

two, or 120 ways of arranging the five letters.

Now this method of counting the arrangements wiU

clearly do for any number whatever of letters ; so that

our rule must be right for all numbers.

We may state it in shorthand thus : the number of

arrangements of n letters is Ix2x3x... xm;or
putting dots instead of the sign of multiplication, it is

1.2.3 ... w. The 1 which begins is of course not

wanted for the multiplication, but it is put in to in-

clude the extreme case of there being only one letter,

in which case, of course, there is only one arrange-

ment.

The product 1.2.3...%, or, as we may say, the

product of the first n natural numbers, occurs very often

in the exact sciences. It has therefore been found

convenient to have a special short sign for it, just as

a parliamentary reporter has a special sign for ' the

remarks which the Honourable Member has thought

fit to make.' Different mathematicians, however, have

used different symbols for it. The symbol ]n is very

much used in England, but it is difficult to print.

Some continental writers have used a note of admira-

tion, thus,'w
!'i

Of this it has been truly remarked that

it has the air of pretending that you never saw it

before. I myself prefer a symbol which has the weighty

authority of Gauss, namely a Greek 11 (Pi), which may
be taken as short for product if we like, thus, IIw. We
may now state that

—

ni=i, n2=2, n3=6, n4=24, n5=i20, n6=720,
and generally that
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n (« + 1) = (w + 1) Un,

for the product of tlie first n+l numbers is equal to the

product of the first n numbers multiplied hj n+ l.

§ 9. 0» a Theorem concerning any Power of a + h.

We -will now apply this rule to the problem of

counting the terms in (a+ 6)"; and for clearness' sake,

as usual, we will begin with a particular case, namely

the case in which n= 5. We know that here there is

one term whose factors are all a's, and one whose

factors are all 6's ; fiye terms whiclfare the product of

four a's by one h, and five which are the product of one

a and four 6's. It remains only to count the number of

terms made by multiplying three a's by two 6's, which

is naturally equal to the number made by multiplying

two a's by three b'a. The question is, therefore, how

many different arrangements can he made with three a's

and two Vs ?

Here the three a's are aU alike, and the two 6's are

alike. To solve the problem we shall have to think of

them as different ; let us therefore replace them for the

present by capital letters and small ones. How many
different arrangements can be made with three capital

letters AB C and two small ones de ?

In this question the capital letters are to be con-

sidered as equivalent to each other, and the small

letters as equivalent to each other; so that the arrange-

ment ABGde counts for the ^ame arrangement as

GA-Bed. Every arrangement of capitals and smalls

is one of a group of 6 x 2= 12 equivalent arrangements;

for the 3 capitals may be arranged among one

another in US,= 6 ways, and the 2 smalls may be

arranged in 112,= 2 ways. Now it is clear that by
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taking all the arrangements in respect of capital and

small letters, and then permuting the capitals among

themselves and the small letters among themselves, we

shall get the whole number of arrangements of the

five letters ABGde; namely 115 or 120. But since

each arrangement in respect of capitals and smalls is

here repeated twelve times, and since 12 goes into 120 ten

times exactly, it appears that the number we require is

ten. Or the number of arrangements of three a's and

two 6's is 115 divided by nS and 112.

The arrangements are in fact

—

bbaaa, babaa, baaba, baaab

abbaa, ababa, abaab

aabba, aabab

aaabb

The first line has a 6 at the beginning, and there are

four positions for the second b ; the next line has a 6 in

the second place, and there are three new positions for

the other b, and so on. We might of course have ar-

rived at the number of arrangements in this particular

case by the far simpler process of direct counting,

which we have used as a verification ; but the advantage

of our longer process is that it will give us a general

formula applicable to all cases whatever.

Let us stop to put on record the result just obtained

;

viz. we have found that

(a + b)« = a^ + Sa'b + 10a^¥ + 10a^¥ + Bab* + &'.

Observe that 1 + 5 + 10 + 10 + 5 + 1= 32, that is, we
have accounted for the whole of the 32 terms which
would be in the last line of the tree appropriate to this

case.

We may now go on to the solution of our general

problem. Suppose that p is the number of a's and q is
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the number of h's whicli are multiplied together in a

certain term ; we want to find the number of possible

arrangements of these p a's and q b's. Let us replace

them for the moment hjp capital letters and g small,

ones, making p + q letters altogether. Then any ar-

rangement of these in respect of capital letters and

small ones is one of a group of equivalent arrangements

got by permuting the capitals among themselves and

the small letters among themselves. Now by per-

muting the capital letters we can make lip arrange-

ments, and by permuting the small letters Ilg ar-

rangements. Hence every arrangement in respect of

capitals and smalls is one of a group of Up x Uq
equivalent arrangements. Now the whole number of

arrangements of the p+ q letters is U.{p + q); and, as

we have seen, every arrangement in respect of capitals

and smalls is here repeated Up x n^ times. Conse-

quently the number we are in search of is got by di-

viding Il{p+ q) by Tip x Tlq. This is written in the

form of a fraction, thus :

—

n (ff + g)

Hp.nq'
although it is not a fraction, for the denominator always

divides the numerator exactly. In fact, it would be

absurd to talk about half a quarter of a way of arranging

letters.

We have arrived then at this result, that the number

of ways of arranging p a's and q h's is

n (p + g)

np . Uq
'

This is also (otherwise expressed) the number of ways
of dividing p + q places into p of one sort and q of
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another ; or again, it is the number of ways of selecting

2» things out ofp + g things.

Applying this now to the expression of (a+ 6)", we

find that each of our other terms is of the form

Up.nq

where p + q= n; and that we shall get them all by

giving to q successively the values 1, 2, 3, &c., and to

p the values got by subtracting these from n. Tor

example, we shall find that

(a + ir = .« + ea^l + ^a^.^ + ^^^ aW

^^ aW + 6ab' + ¥.
n2-n4

The calculation of the numbers may be considerably

shortened. Thus we have to divide 1.2. 3. 4. 5. 6 by

1.2.3.4; the result is of course 5 . 6. This has to

be further divided by 2, so that we finally get 5 . 3 or

15. Similarly, to calculate

ns .
03'

we have only to divide 4.5.6 by 1 . 2 . 3 or 6, and we
get simply 4 . 5 or 20.

To write down our expression for (a+ h)" we re-

quire another piece of shorthand. We have seen that
it consists of a number of terms which are all of the
form

^"^
aPh\

Up.Uq

but which differ from one another in having forp and
q different pairs of numbers whose sum is n. Now just
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as we used the Greek letter n for a product so we use

the Greek letter S (Sigma) for a sum. Namely, the

sum of all such terms will be written down thus :

—

Now we may very reasonably include the two

extreme terms a" and b" in the general shape of these

terms. For suppose we made p = n and 2=0, the

corresponding term would be :

—

Ilw . IIo '

and this wiU be simply cH^ii nO= l and h'>=l. Of

course there is no sense in ' the product of the first no

numbers ' ; but if we consider the rule

n (ra + 1) = (w + 1) Un,

which holds good when n is any number, to be also

true when n stands for nothing, and consequently

w+ 1= 1, it then becomes

ni = no,

and we have already seen reason to make III mean 1.

Next if we say that V means the result of multiplying

1 hjh q times, then &" must mean the result of multi-

plying 1 by 6 no times, that is, of not multiplying it at

all; and this result is 1.

Making then these conventional interpretations,

we may say that

[a + &)» = 2jjiI?L.^a''&', [p + q= ti],

it being understood that p is to take all values from n

down to 0, and q all values from up to n.

This result is called the Binomial Theorem, and was

originally givejj by Sir Isaac Newton. An expression



32 THE COMMON SENSE OF THE EXACT SCIENCES.

eontaiaing two terms, like a+ b, is sometimes called

Unomial ; and the name Binomial Theorem is an abbre-

viation for theorem concerning any power of a binomial

expression.

§ 10. 0» Operations which appear to be without Meaning.

We have so far considered the operations by which,

when two numbers are given, two others can be deter-

mined from them./

First, we can add the two numbers together and get

their sum.

Secondly, we can multiply the two numbers together

and get their product.

To the questions what is the sum of these two

numbers, and wbat is the product of these two numbers,

there is always an answer. But we shall now consider

questions to which there is not always an answer.

Suppose that I ask what number added to 3 will"

produce 7. I know, of course, that the answer to this

is 4, and the operation of getting 4 is called subtracting

3 from 7, and we denote it by a sign and write it

7-3=4.
Bu^ if I ask, what number added to 7 will make 3,

althoiigh this question seems good English when ex-

pressed in words, yet there is no answer to it ; and if I

write down in symbols the expression 3— 7, 1 am asking

a question to which there is no answer.

There is then an essential difference between adding

and subtracting, for two numbers always have a sum.

If I write down the expression 3 + 4, I can use it

as meaning something, because I know that there is

a number which is denoted by that expression. But if

I write down the expression 3— 7, and then speak of it
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as meaning sometliing, I shall be talking nonsense,

because I shall have put together symbols the realities

corresponding to which will not go together. To the

question, what is the result when one number is taken

from another, there is only an answer in the case

where the second number is greater than the first.

In the same way, when I multiply together two

numbers I know that there is always a product, and

I am therefore free to use such a symbol as 4x5,
because I know that there is some number that is

denoted by it. But I may now ask a question; I

may say, What number is it which, being multiplied

by 4, produces 20 ? The answer I know in this case

is 5, and the operation by which I get it is called

dividing 20 by 4. This is denoted again by a symbol,

20-T-4 = 5.

But suppose I say divide 21 by 4. To this there is

no answer. There is no number in the sense in which

we are at present using the word—that is to say, there

is no whole number—which being multiplied by 4 wiU
produce 21 : and if I take the expression 21-T-4, and

speak of it as meaning something, I shall be talking

nonsense, because I shall have put together symbols

whose realities will not go txjgether. U^'

The things that we have observed here wiU occur

again and again in mathematics : for every operation

that we can invent amounts' to asking a question,

and this question may or may not have an answer

according to circumstances.

If we write down the symbols for the answer to the

question in any of those cases where there is no answer

and then speak of them as if they meant something, we
shall talk nonsense. But this nonsense is not to be

thrown away as useless rubbish. We have learned by
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very long and varied experience ttat nothing is more

valuable than the nonsense which we get in this way

;

only it is to be recognised as nonsense, and by means

of that recognition made into sense.

We turn the nonsense into sense by giving a new

meaning to the words or symbols which shall enable the

question to have an answer that previously had no

answer.

Let us now consider in particular what meaning we

can give to our symbols so as to make sense out of the

at present nonsensical expression, 3— 7.

§ 11. Steps.

The operation of adding 3 to 5 is written 5 + 8,

and the result is 8. We may here regard the + 3 as

a way of stepping from 6 to 8, and the symbol +3
may be read in words, step forward three.

In the same way, if we subtract 3 from 5 and get 2,

we write the process symbolically 6— 3= 2, and the

symbol —3 may be regarded as a step from 5 to 2.

If the former step was forward this is backward, and

w6 may accordingly read — 3 in words, step backwards

three.

A step is always supposed to be taken from a

number which is large enough to make sense of the

result. This restriction does not affect steps forward,

because from any number we can step forward as far as

we like ; but backward a step can only be taken from
numbers which are larger than the step itself.

. The next thing we have to observe about steps is

that when two steps are taken in succession from any
number, it does not matter which of them comes first.

If the two steps are. taken in the same direction this is

clear enough. +3 + 4, meaning step forward 3 and
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then step forward 4, directs us to step forward by

tlxe number which is the sum of the numbers in the

two steps ; and in the same way —3—4 directs us to

step backward the sum of 3 and 4, that is 7.

If the steps are in opposite directions, as, for

example, +3— 7, we have to step forward 3 and

then backward 7, and the result is that we must step

backwards 4. But the same result wOTld have been

attained if we first stepped backward 7 and then

forward 3. The result, in fact, is always a step which

is in the direction of the greater of the two steps, and

is in magnitude equal to their difference.

We thus see that when two steps are taken in suc-

cession *they are equivalent to one step, which is inde-

pendent of the order in which they are taken.

We have now supplied a new meaning for our

symbols, which makes sense and not nonsense out of

the symbol 3— 7. The 3 must be taken to mean + 3,

that is, step forward 3 ; the — 7 must be taken to mean
step backward 7, and the whole expression no longer

means take 7 from 3, but add 3 to and then subtract

7 from any number which is large enough to make
sense of the result. And accordingly we find that the

result of this operation is —4, or, as we may write it,

+ 3-7 =-4.
From this it follows by a mode of proof precisely

analogous to that which we used in the case of multi-

plication, that any number of steps taken in succession

have a resultant which is independent of the order in

which they are taken, and we may regard this rule as

an extension of the rule already proved for the addition

of numbers.

A step may be multiplied or taken a given number
of times, for example, 2(—3) =—6; that is to say.
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if two backward steps of 3 be possible, they are equiva-

lent to a step backwards of 6.

In this operation of multiplying a step it is «lear

that what we do is to multiply the number whi^Jh is

stepped, and to retain the character of the step. On

multiplying a step forwards we still hare a step for-

wards, and on multiplying a step backwards we still

have a step backwards.

This multiplying may be regarded as an operation

by which we change one step into another. Thus in

the example we have just considered the multiplier 2

changes the step backwards 3 into the step backwards

6. But this opei-ation, as we have observed, will only

change a step into another of the same kind, and the

question naturally presents itself. Is it possible to find

an operation which shall change a step into one of a

different kind ? Such an operation we should naturally

call reversal. , We should say that a step forwards is

reversed, when it is made into a step backwards ; and a

step backwards is reversed when it is made into a step

forwards.

If we denote the operation of reversal by the letter

r, we can, by combining this with a multiplication,

change —3 into +6, a step backwards 3 into a step

forwards 6 ; viz. we should have the expression

r2(—3)= + 6. Now the operation,which is performed on

one step to change it into another, may be of two kinds

:

either it keeps a step in the direction which it originally

had, or it reverses it. If to make things symmetrical

we insert the letter Tt when a step is kept in its

original direction, we may write the equation A;2(— 3)

= — 6 to express the operation of simply multiplying.

Of course it is possible to perform on any given

step a succession of- these operations. If I take the
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step +4, treble it, and reverse it, I get —12. If I

double this and keep it, I get —24, and this may
be written, fe2(r3)(+ 4) = — 24. But this is equal

to rC(+ 4), which tells us that the two successive opera-

tions which we have performed on this step, trebling

and reversing it, doubling and keeping it, are equiva-

lent to the single operation of multiplying by 6 and

reversing it. It is clear also that whatever step we had

taken the two first operations performed successively

are always equivalent to the third, and we may thus

write the equation fc2(r3) = r6.

Suppose however we take another step and treble

it and reverse it, and then double it and reverse it

again ; we should have the result of multiplying it by

six and keeping its direction unchanged.

This may be written r2{r3) = k. 6.

If we compare the last two formxdae with those

which we previously obtained, viz. &2(— 3) = —6 and

r2(— 3) = +6, we shall see that the two sets are alike,

except that in the one last obtained k and r are written

instead of + and — respectively.

The two sets however express entirely different

things. Thus, taking the second formulae of either set

on the one hand, the statement is. Double and reverse

the step backward 3, and you have a step forward; 6

;

on the other hand. Treble and reverse and then double

and reverse any step whatever, and you have the effect

of sextupling and keeping the step.' We shall find that

this analogy holds good in general, that is, if we write

down the effect of any number of successive operations

performed upon a step, there will always be a correspond-

ing statement in which this stepping is replaced by a.n

operation ; or we may say, any operation which converts

one step into another will also convert one operation into
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another where the converted operation is a multiplying

by the number expressing the step and a keeping or

rerersing. according as the step is forward or backward.

§ 12. Extension of the Meaning of Symbols.

We now proceed to do something which must appa-

rently introduce the greatest confusion, but which, on

the other hand, increases enormously our powers.

Having two things which we have so far quite

rightly denoted by different symbols, and finding that

we arrive at results which are uniform and precisely

similar to one another except that in one of them one

set of symbols is used, in the other another set, we alter

the meaning of our symbols so as to see only one set

instead of two. We make the symbols + and — mean

for the future what we have here meant by h and r,

viz. keep and reverse. We give them these meanings

in addition to their former meanings, and leave it to the

context to show which is the right meaning in any

particular case. Thus, in the equation (—2) (— 3)= + 6

there are two possible meanings ; the — 3 and + 6, may
both mean steps, in this case the statement is : Double

and reverse the step backwards of 3 and you get the

step forward 6. But the —3 and the +6 may also

mean not steps but operations, and in this case the

meaning is; triple and reverse and then double and
reverse any step whatever, and you get the same result

as if you had sextupled and kept the step.^'

Let us now see what the reason is for saying that

these two meanings can always exist together. Let us

first of all take the second meaning, and frame a rule

for finding the result of any number of successive

operations.
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First, the number which, is the multiplier in the

result must clearlj be the product of all the numbers

in the successive operations.

Next, every pair of reversals cancel one^another, so

that, if there is an even number of them, the result

must be an operation of retaining.

This then is the rule : Multiply together the

numbers in the several operations, prefixing to them
+ if there is an even number of minus or reversing

operations, prefixing — if there is an odd number.

In the next place, suppose that many successive

operations are performed upon a step. The number
in the resulting step will clearly be the product of all

the numbers in the operations and in the original step.

If there is an even number of reversing operations,

the resulting step will be of the same kind as the

Original one ; if an odd number, of the opposite

kind. Now let us suppose that the original step

were a step backwards ; then if there is an even number

of reversing operations, the resulting step will also be a

step backwards. But. in this case the number of (—

)

signs, reckoned independently of their meaning, will be

odd ; and so the rule coincides with the previous one.

If an odd number of reversing operations is per-

formed on a negative step, the result is a positive step.

But here the whole number of (— ) signs, irrespective

of their meaning, is an even number ; and the result

again agrees with the previous one.

In all cases therefore by using the same symbols

to mean either a ' forward ' and a ' backward ' step

respectively, or ' keep ' and ' reverse ' respectively, we

shall be able to give to every expression two interpreta-

tions, and neither of these will ever be untrue.

In the process of examiniag this statement we have
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shown by the way that the result of any number of

successive operations on a step is independent of the

order of them. Tor it is always a step whose magnitude

is the prodttct of the numbers in the original step and

in the operations, and whose character is determined

by the number of reversals.

§ 13. Addition and Multiplication of Operations.

We may now go on to find a rule which connects

together the multiplication and the addition of steps.

If I multiply separately the steps + 3 and — 7 by 4,

and then take the resultant of the two steps which I so

obtain, I shall get the same thing as if I had first

formed the resultant of +3 and —7, and then multi-

plied it by -4. In fact, + 12 — 28 = — 16, which is

4(— 4). This is true in general, and it obviously

amounts to the original rule that a set of things comes

to the same number in whatever order we count them.

Only that now some of the counting has to be done

backwards and some again forwards.

But now, besides adding together steps, we may
also in a certain sense add together operations. It

seems natural to assume at once that by adding toge-

ther + 3 and — 7 regarded as operations, we must needs

get the operation —4. It is very important not to

assume anything without proof, and still more import-

ant not to use words without attaching a definite

meaning to them.

The meaning is this. If I take any step whatever,

treble it without altering its character, and combine

the resiUt with the result of multiplying the original

step by 7 and reversing it, then I shall get the same
result as if I had multiplied the original step by 4 and
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reversed it. This is perfectly true, and we may see it

to be true by, as it were, performing our operations in

the form of steps. Suppose I take the step +5, and

want to treble it and keep its character unchanged. I

can do this by taking three steps of five numbers each in

the same direction (viz, the forward direction) as the

original step was to be taken. Similarly, if I want to

multiply it by — 7, this means that I must take 7 steps

of five numbers each in the opposite or backward direc-

tion. Then finally, what I have to do is to take three

steps forwards and seven steps backwards, each of these

steps consisting of five numbers ; and it appears at once

that the result is the same as that of taking 4 steps

backwards of five numbers each.

We have thus a definition of the sum of two

operations ; and it appears from the way in which we
have arrived at it that this sum is independent of the

order of the operations.

We may therefore now write the formulse :

—

a + b = b + a

a (b + c) = ab + ac

{a+ b)c = ac + be

ab = ba,

and consider the letters to signify operations performed

upon steps. In virtue of the truth ofthese laws the whole

of that reasoning which we applied to finding a power

of the sum of two numbers is applicable to the finding

of a power of the sum of two operations. If it did not

take too much time and space, we might go through it

again, giving to all the symbols their new meanings.

It is worth while, perhaps, by way of example, to

explain clearly what is meant by the square of the sum
of two operations.
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We will take for example, +5 and —3.

The formula tells us that (+ 5— 3)= is equal to

(-)-6)2+ (_3)2+ 2(+ 5)(— 3), This means that if we

apply to any step twice over the sum of the operations

+ 5 and —3, that is to say, if we multiply it by 5 and

keep its direction, and combine with this step the result

of multiplying the original step by 3 and reversing it,

and then apply the same process to the result so obtained,

we shall get a step which might also have been arrived

at by combining together the following three steps,:

—

First, the original step twice multiplied by 5.

Secondly, the original step twice multiplied by 3

and twice reversed; that is to say, unaltered in

direction.

Thirdly, twice the result of tripling the original step

and reversing it, and then multiplying by 5 and retain-

ing the direction.

§ 14. Division of Operations.

We have now seen what is meant by the multipli-

cation of operations; let us go on to consider what

sort of question is asked by division.

Let us take for example the symbolic statement

— 3( + 5) = — 15 ; and let us give it in the first place

the meaning that to triple and reverse the step forward

5 gives the step backward 15. We may ask two
questions upon this statement. First, What operation

is it which, being performed on the step forwards 6, will

give the step backwards 15 ? The answer, of course,

is triple and reverse. Or we may ask this question.

What step is that, which, being tripled and reversed,

will give the step backward 15? The answer is. Step
forwards 5. But we have only one word to describe
the process by which we get the answer in these two
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' cases. In the first case we say that we divide the step

— 15 by the step +5 ; in the second case we say we
divide the step —15 by the operation —3.

The word divide thus gets two distinct meanings.

But it is very important to notice that symbolically the

answer is the same in the two cases, although the

interpretation to be given to it is different.

The step —15 may be got in two ways; by tripling

and reversing the forward step + 5, or by quintupling

the backward step — 3. In symbols,

(-3) (+ 5) = ( + 5) (-3) = -15.

Hence the problem. Divide —15 by —3 may mean
either of these two questions : What step is that which,

being tripled and reversed, gives the step —15? Or,

What operation is that which, performed on the step

— 3, gives the step —15? The answer to the first

question is, the step + 5 ; the answer to the second is

the operation of quintupling and retaining direction,

that is, the operation + 5. So that although the word

divide, as we have said, gets two distinct meanings, yet

the two different results of division are expressed by

the same symbol.

In general- we may say that the problem. Divide

the step a by the step h, means. Find the operation (if

any) which will convert b into a. But the problem,

Divide the step a by the operation 6, means, Mnd the

step (if any) which b will convert into a. In both cases,

however, the process and the symbolic result are the

same. We must divide the number of a by the number

of b, and prefix to it + if the signs of a and b are alike,

— if they are different.

We may also give to our original equation

(-3) X ( + 5) = -15
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its other meaning, in which both —3 and +5 are ope-

rations, and —15 is the operation which is equivalent

to performing one of them after the other. In this case

the problem, Divide the operation —15 by the operation

—3 means, Find the Operation which, being succeeded

by the operation —3, will be equivalent to the operation

— 15. Or generally, Divide the operation a by the

operation h, means, Find the operation which, being

succeeded by 6, will be equivalent to a.

Now it is worth noticing that the division of step

by step and the division of operation by operation, have

a certain likeness between them, and a common differ-

ence from the division of step by operation. Namely,

the result of dividing a by i, or, as we may write it,

—, when a and h are both steps or both operations, is

an operation which converts h into a. This we may
write in shorthand,

— . = a.

But when a is a step and h an operation, the result of

division is a step on which the operation h must be

performed to convert it into a; or, in shorthand,

J. <*
b . - = a,

The fact that the symbolic result is the same in the

two cases may be stated thus :

—

and in this form we see that it is a case of the commu-
tative law. So long, then, as the commutative law is

true, there is no occasion for distinguishing symboli-
cally between the two meanings. But, as we shall see
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by-and-by, there is occasion to deal with other kinds

of steps and operations in which the commutatiTe law
does not hold ; and for these a convenient notation has

been suggested by Professor Cayley. Namely, ^ means

the operation which makes b into a ; but '— repre-

sents that which the operation b will convert into a. So

that

—

fJ . 6 = a, but 6 . L- = a.
\b h\

It is however convenient to settle beforehand that when-

ever the symbol -j- is used without warning it is to have

the first meaning—namely, the operation which makes
6 into a.

§ 16. General Results of our Extension of Terms,

It will be noticed that we have hereby passed from
the consideration of mere numbers, with which we
began, to the consideration first of steps of addition or

subtraction of number from number, and then of

operations of multiplying and keeping or multiplying

and reversing, performed on these steps ; and that we
have greatly widened the meaning of all the words that

we have employed.

To addition, which originally meant the addition of

two numbers, has been given the meaning of a combina-
tion of steps to form a resultant step equivalent in effect

to taking them in succession.

To multiplication, which was originally applied to

two numbers only, has been given the meaning of a

combination of operations upon steps to form a resultant

operation equivalent to their successive performance.
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"^ We have found that the same properties which

characterise the addition and multiplication of numbers

belong also to the addition and multiplication of steps

and of operations. And it was this very fact of the

similarity of properties which led us to use our old

words in a new sense. We shall find that this same

process is carried on in the consideration of those

other subjects which lie before us ; but that the precise

similarity which we have here observed in the pro-

perties of more simple and more complex operations

will not in every case hold good ; so that while this

gradual extension of the meaning of terms is perhaps

the most powerful instrument of research which has

yet been used, it is always to be employed with a cau-

tion proportionate to its importance.



CHAPTER n.

SPACE,

§ 1. Boundaries take wp ifio Room.

Geometet is a physical science. It deals with the

sizes and shapes and distances of things. Just as we

have studied the number of things by making a simple

and obvious observation, and then using this over and

over again to see where it would bring us ; so we shall

study the science of the shapes and distances of things

by making one or two very simple and obvious obser-

vations, and then using these over and over again, to

see what we can get out of them.

The observations that we make are :—
First, that a thing may be moved about from one

place to another without altering its size or shape.

Secondly, that it is possible to have things of the

same shape but of different sizes.

Before we can use these observations to draw any-

exact conclusions from them, it is necessary to consider

rather more precisely what they mean.

Things take up room. A table, for example, takes

up a certain part of the room where it is, and there is

another part of the room where it is not. The thing

makes a difference between these two portions of space.

Between these two there is what we caU the surface

of the table.

We may suppose that the space all round the table
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is filled with air. The surface of the table is then

something just between the air and the wood, which

separates them from one another, and which is neither

the one nor the other.

It is a mistake to suppose that the surface of the

table is a very thin piece of wood on the outside of it.

We can see that this is a mistake, because any reason

which led us to say so, would lead us also to say that

the surface was a very thin layer of air close to the

table. The surface in fact is common to the wood and

to the air, and takes up itself no room whatever;'

Part of the surface of the table may be of one colour

and part may be of another.

On the surface of this sheet of paper there is drawn

a round black spot. We call the black part a circle.

Fio. 1.

It divides the surface into two parts, one where it is and

one where it is not.

This circle takes up room on the surface, although

the surface itself takes up no room in space. We are

thus led to consider two different kinds of room ; space-

room, in which solid bodies are, and in which they

move about ; and surface-room, which may be regarded

' It is certain that however smooth a natural surface may appear to be,

it could be magnified to roughness. Hence, in the case of the surface of
the table and the air, it would seem probable that there is a layer in which
particles of wood and air are mingled. The boundary in this case of air
and table would not be what we 'see and feel ' (cf. pT'^^O, nor would it

correspond to the surface of the geometer. "We are, I t'fiink, compelled to
consider the surface of the geometer as an ' idea or imaginary conception,'
drawn from the apparent (not real) boundaries of physical objects, such as
the writer is describing. Strongly as I feel the ideal nature of geometrical
conceptions in the exact sciences, I have thought it unadvisable to alter
the text. The distinction is made by Clifford himself (Essays I pp 306
321).--K.P.

J
• -tt^-
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from two different points of view. From one point of

view it is the boundary between two adjacent portions

of space, and takes up no space-room whatever. From
the other point of view it is itself also a kind of room

which may be taken up by parts of it.

These parts in turn have their boundaries.

Between the black surface of the circle and the

white surface of the paper round it there is a line, the

circumference of the circle. This line is neither part of

the black nor part of the white, but is between the two.

It divides one from the other, and takes up no surface-

room at all. The line is not a very thin strip of surface,

any more than the surface is a very thin layer of solid.

Anything which led us to say that this line, the

boundary of the black spot, was a tljin strip of black,

would also lead us to say that it was a thin strip of white.

We may also divide a line into two parts. If the

paper with this black circle upon it were dipped into

Fia. 2.

water so that part of the black circle were sub-

merged, then the line surrounding it would be partly in

the water and partly out.

The submerged part of the line takes up room on it.

It goes a certain part of the way round the circum-

ference. Thus we have to consider line-room as well as

space-room and surface-room. The line takes up
absolutely no room on the surface; it is merely the

boundary between two adjacent portions of it. Still

less does it take up any room in space. And yet it has

a certain room of its own, which may be divided

into parts, and taken up or filled by those parts.



50 THE COMMOIf SEIiTSE OF THE EXACT SCIENCES.

These parts again have boundaries. Between tte

submerged portion of tbe circumference and the other

part there are two points, one at each end. These

points are neither in the water nor put of it. They are

in the surface of the water, just as they are in the sur-

face of the paper, and on the boundary of the black spot.

Upon this line they take up absolutely no room at all.

A point is not a very small length of the line, any

more than the line is a very thin strip of surface, It is

a division between two parts of the line which are next

one another, and it takes up no room on the line at all.

The important thing to notice is that we are not

here talking of ideas or imaginary conceptions, but

only making common-sense observations about matters

of every-day experience.

The surface of a thing is something that we con-

stantly observe. We can see it and feel it, and it is a mere
common-sense observation to saythat this surface is com-

mon to the thing itself and to the space surrounding it.

A line on a surface which separates one part of the

surface from another is also a matter of every-day

experience. It is not an idea got at by supposing a
string to become indefinitely thin, but it is a thing

given directly by observation as belonging to both por-

tions of the surface which it divides, and as being there-

fore of absolutely no thickness at all. The same may be
said of a point. The point which divides the part of

our circumference which is in water from the part which
is out of water is an observed thing. It is not an idea
got at by supposing a small particle to become smaller
and smaller without any limit, but it is the boundary
between two adjacent parts of a line, which is the
boundary between two adjacent portions of a surface
which is the boundary between two adjacent portions pf
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space. A point is a thing which we can see and know,

not an abstraction which we build up in our thoughts.

When we talk of drawing lines or points on a sheet

of paper, we use the language of the draughtsman and

not of the geometer. Here is a picture of a cube

represented by lines, in the draughtsman's sense.

Each of these so-called 'lines' is a black streak of

printer's ink; of varying breadth, taking up a certain

Fis. 3.

amount of room on the paper. By drawing such ' lines

'

suflSciently close together, we might entirely cover up

as large a patch of paper as we liked. Each of these

streaks has a line on each side of it, separating the

black surface from the white surface ; these are true

geometrical lines, taking up no surface-room whatever.

Millions of millions of them might be marked out

between the two boundaries of one of our streaks, and

between every two of these there would be room for

millions more.

Still, it is very convenient, in drawing geometrical

figures, to represent lines by black streaks. To avoid

all possible misunderstanding in this matter, we shall

make a convention once for all about the sense in

which a black streak is to represent a line. When the

streak is vertical, or comes straight down the page, like

this
I

, the line represented by it is its right-hand boun-

dary. In all other cases the line shall be the upjptr

boundary of the streak.

So also in the case of a point. When we try to

represent a point by a dot on a sheet of paper, we
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make a black patch of irregular shape. The boundary

of this black patch is a line. When one point of this

boundary is higher than all the other points, that

highest point shall be the one represented by the dot.

When however several points of the boundary are at

the same height, but none higher than these, so that

the boundary has a flat piece at the top of it, then the

right-hand extremity of this flat piece shall be the

point represented by the dot.

This determination of the meaning of our figures

is of no practical use. We lay it down only that the

reader may not fall into the error of taking patches

and streaks for geometrical points and lines.

§ 2. Lengths can he Moved without Change.

Let us now consider what is meant by the first of

our observations about space, viz., that a thing can be

moved about from one place to another without altering

its size or shape.

First as to the matter of size. We measure the size

of a thing by measuring the distanceS^pf various points

on it. Fpr example, we should measure the size of a

table by measuring the distance from end to end, or the

distance across it, or the distance from the top to the

bottom. The measurement of distance is only possible

when we have something, say a yard measure or a piece

of tape, which we can carry about and which does not

alter its length while it is carried about. The measure-

ment is then effected by holding this thing in the place

of the distance to be measured, and observing what
part of it coincides with this distance.

Two lengths or distances are said to be eq^ual when
the same part of the measure will fit both of them.
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Thus we should say that two tables are equally broad,

if we marked the breadth of one of them on a piece of

tape, and then carried the tape over to the other table

and found that its breadth came up to just the same

mark. Now the piece of tape, although convenient, is

not absolutely necessary to the finding out of this fact.

We might have turned one table up and put it on top

of the other, and so found out that the two breadths

were equal. Or we may say generally that two lengths

or distances of any kind are equal, when, one of them
being brought up close to the other, they can be made
to fit without alteration. But the tape is a thing far

more easily carried about than the table, and so in prac-

tice we should test the equality of the two breadths by

measuring both against the same piece of tape. We
find that each of them is equal to the same length of

tape ; and we assume that two lengths which are equal to

the same length are egual to each other. This is equiva-

lent to saying that if our piece of tape be carried

round any closed curve and brought back to its original

position, it will not have altered in length.

How so ? Let us assume that, when not used, our

piece of tape is kept stretched out on a board, with one
end against a fixed mark on the board. Then we know
what is meant by two lengths being equal which are

both measured along the tape from that end. Now take

three tables. A, B, C, and suppose we have measured
and found that the breadth of A is equal to that of B,

and the breadth of B is equal to that of C, then we
say that the breadth of A is equal to that of C. This

means that we have marked off the breadth of A on
the tape, and then carried this length of tape to B, and
found it fit. Then we have carried the same length

from B to C, and found it fit. In saying that the
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breadth of C is equal to that of A, we assert that on

taking the tape from C to A, whether we go near B or

not, it wUl be found to fit the breadth of A. That is,

if we take our tape from A to B, then from B to 0, and

then back to A, it will still fit A if it did so at first.

These considerations lead us to a very singular con-

clusion. The reader will probably have observed that

we have defined length or distance by means of a

measure which can be carried about without cJianging

its length. But how then is this property of the

measure to be tested? We may carry about a yard

measure in the form, of a stick, to test our tapie with;

but all we can prove in that way is that the two things

are always of the same length when they are in the

same place ; not that this length is unaltered.

The fact is that everything would go on quite as

well if we supposed that things did change in length

by mere travelling from place to place, provided that

(1) different things changed equally, and (2) anything

which was carried about and brought back to its original

position filled the same space.* All that is wanted is

that two things which fit in one place should also fit in

another place, although brought there by different

paths ; unless, of course, there are other reasons to the

contrary. A piece of tape and a stick which fit one

another in London will also fit one another in New
York, although the stick may go there across the

Atlantic, and the tape via India and the Pacific. Of
course the stick may expand from damp and the tape

may shrink from dryness; Such non-geometrical cir-

cumstances would have to be allowed for. But so far

as the geometrical conditions alone are concerned—the

' These remarks refer to the geometrical, and not necessarily to all the
physical properties of bodies.—^K. P.
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mere cariying about and change of place—two things

which fit in one place will fit in another.

Upon this fact are founded, as we have seen, the

notion of length as measured, and the axiom that

lengths which are equal to the same length are equal

to one another.

Js it possible, however, that lengths do really

change by mere moving about, without our knowing it?

Whoever likes to meditate seriously upon this ques-

tion will find that it is wholly devoid of meaning. But
the time employed in arriving at that conclusion will

not have been altogether thrown away.

§ 3. The Characteristics of Shape,

We have now seen what is meant by saying that a
thing can be moved about without altering its size;

namely, that any length which fits a certain measure in

one position will also fit that measure when both have
been moved by any paths to some other position. Let
us now inquire what we mean by saying that a thing
can be moved about without altering its shape.

rirst let us observe that the shape of a thing
depends only on its bounding surface, and not at all

upon the inside of it. So that we may always speak
of the shape of the surface, and we shall mean the
same thing as if we spoke of the shape of the thing.

Fio. i.

Let us observe then some characteristics of the sur-

face of things. Here are a cube, a cylinder, and a sphere.
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The surface of the cube has six flat sides, with edges

and corners. The cylinder has two flat ends and a

round surface between them ; the flat ends being

divided from the round part by two circular edges.

The sphere has a round smooth surface all over.

We observe at once a great distinction in shape be-

tween smooth parts of the surface, and edges, and corners.

An edge being a line on the surface is not any part of

it, in the sense of taking up surface room ; still less is

a corner, which is a mere point. But still we may divide

the points of the surface into those where it is smooth

(like all the points of the sphere, the round and flat parts

of the cylinder, and the flat sides of the cube), into

points on an edge, and into comers. For convenience, let

us speak of these points respectively as smooth-points,

edge-points, and corner-points. We may also put the

edges and corners together, and call them rough-

points.

Now let us tike the sphere, and put it upon a flat

face of the cube (fig. 5). The two bodies will be in con-

PlG. 6.

tact at one point ; that is to say, a certain point on the
surface of the sjhere and a certain point on the surface
of the cube are made to coincide with one another and
to be the same point. And these are ooth smooth-points.
Now we cannot move the sphere ever so little without separ-
ating. these points. If we roll it a very little way on the
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face of the cube, we shall find that a different point of

the sphere is in contact with a different point of the cube.

Iha. 6.

And the same thing is true if we place the sphere in

contact with a smooth-point on the cylinder (fig. 6).

Next let lis put the round part of the cylinder on

the flat face of the cube. In this case there will be

contact all along a line. At any point of this line, a

certain point • on the surface of the cylinder and a

certain point on the surface ofthe cube have been made
to coincide with one another and to be the same point.

And these are both smooth-points. It is just as true

as before, that we cannot move one of these bodies ever

so little relatively to the other without separating the

6^^3|
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our attention upon a particular point on the flat surface

of the cylinder and the point on the face of the cube

with which it now coincides ; these two being smooth-

FiQ. 8.

points. We observe again, that it is impossible to move

one of these bodies ever so little relatively to the other

without separating these two points.^

Here, however, something has happened which will

give us further instruction. We have all along sup-

fia. 9.

posed the flat face of the cylinder to be smaller than

the flat face of the cube. When these two are in con-

In all these cases (figB. S-8) the relative motion spoken of must be

either motion of translation or of tilting; one body might hare a sp,n

about a vertical axis without any separation of these two points. The true

distinction between the contact of smooth-points and of smooth and rough-

points seems to be this : in the former case without separating two points

there is only one degree of freedom—namely, spin about an axis normal to

the smooth surfaces at the points in question ; in the latter case there are

at least two (edge-point or smooth-point) and may be an infinite number of

degrees of freedom—namely, spins about two or more axes passing through

the rough-point. The reader will understand those terms better after tha

chapter on Motion.

—

K, F,
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tact, let the cylinder stand on the middle of the cube,

as in jBg. 8, the circle being wholly enclosed by the

square. Then when we tilt the cylinder over we shall

get it into the position of fig. 9. We have already

observed that in this case no smooth-points which were

previously in contact remain in contact. But there are

two points which remain in contact ; for in the tilted

position a point on the circular edge of the cylinder

rests on a point on the face of the cube; and these two

points were in contact before. We may tilt the cylinder

as much or as little as we like—provided we tilt always

in the same direction, not rolling the cylinder on its

edge—and these two points will remain in contact.

We learn therefore that when an edge-point is in contact

with a smooth-point, it may he possihle to move one of the

two bodies relatively to the other witlwut separating those

two points.

The same thing may be observed if we put the

round or flat surface of the cylinder against an edge

of the cube, or if we put the sphere against an edge of

either of the other bodies. Holding either of them
fast, we may move the other so as to keep the same two
points in contact ; but in order to do this, we must
always tilt in the same direction.

If, however, we put a corner of the cube in contact

with a smooth point of the cylinder, as in fig. 10, we

Fia. 10.

shall find that we can keep these two points in contact
without any restriction on the direction of tilting. We
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may tilt the cube any way we like, and stiU keep its

corner in contact with the smooth-point of the cylinder.

When we put two edge-points together, it makes a

difference whether the edges are in the same direction

at the point of contact or whether they cross one

another. In the former case we may be able to keep

the same two points in contact by tilting in a particular

direction ; in the latter case we may tilt in any direc-

tion. So if a comer is in contact with an edge-point

there is no restriction on the direction of tilting, and

much more if a comer is in contact with a comer.

The upshot of all this is, that in a certain sense all

surfaces are of the same shape at all smooth-points ; for

when we put two smooth-points in contact, the surfaces

so fit one another at those points that we cannot move
one of them relatively to the other without separating

the points.'

It is possible for two edges to fit so that we cannot

move either of the bodies without separating the points

in contact. For this it is necessary that one of them
should be re-entrant (that is, should be a depression in

the surface, not a projection), as in fig. 11 ; and here

we can seethe propriety of saying that the two surfaces
are of the same shape at a point where they fit in
this way. The body placed in contact with the cube

' See, however, the footnote, p. 58.—K. P.
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is formed by joiuing together two spheres from which

pieces have been sliced off. If only very small pieces

have been sliced off, tlie re-entrant edge will be very

sharp, and it will be impossible to bring the cube-edge

into contact with it (fig. 12) ; if nearly half of each

Fia. 12. Fio. 13. Fio. 14.

sphere has been cut off the re-entrant edge will be wide

open, and the cube will rock in it (fig. 13). There is

clearly one intermediate form in which the two edges

will just fit (fig. 14) ; contact at the edge will be

possible, but no rocking. Now in this case, although

one edge sticks out and the other is a dint, we may
still say that the two surfaces are of the same shape

at the edge. For if we suppose our twin-sphere

body to be made of wood, its surface is not only sur-

face of the wood, but also surface of the surrounding

air. And that which is a dint or depression in the

wood is at the same time a projection in the air. In
just the same way, each of the projecting edges and
corners of the cube is at the same time a dint or

depression in the air. But the surface belongs to one

as much as the other ; it knows nothing of the differ-

ence between inside and outside ; elevation and depres-

sion are arbitrary terms to it. So in a thin piece of

embossed metal, elevation on one side means depression

on the other, and vice versa, ; but it is purely arbitrary
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wMcli side we consider the right one. (Observe that

the thin piece of metal is in no sense a representation

of a surface ; it is merely a thin solid whose two surfaces

are very nearly of the same shape.)

Thus we see that the edge of wood in our cube is

of the same shape as the edge of air in the twin-sphere

solid ; or, which is the same thing, that the two surfaces

are of the same shape at the edge.

Now this twin-sphere solid is a very convenient one,

because we can so modify it as to make an edge of any

shape we like. Hitherto we have supposed the slices

cut off to be less than half of the spheres ; let us now
fasten together these pieces, and so form a solid with a

projecting edge, as in fig. 16. The two solids so formed,

one with a re-entrant edge from the larger pieces, the

other with a projecting edge from the smaller pieces,

will be found always to have their edges of the same
shape, or to fit one another at the edge in the sense

just explained.

(j)
Fio. 15.

Now suppose that we cut our spheres very nearly in
half. (Of course they must always be cut both alike,

or the flat faces would not fit together.) Then when
w-e join together the larger pieces and the smaUer
pieces, we shall form solids with very wide open edges.
The projecting edge will be a very slight ridge, and the
re-entrant one a very slight depression.

If we now go a step further, and cut our spheres
actually in half, of course each of the new solids will
be again a sphere; and there will be neither ridge nor
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depression ; the surfaces will be smooth all over. But

we have arrived at this result by considering a project-

(i) («)

(iii) (iv) (v) (vi) (vii)

OOOO'
Fi9. 16.

ing edge as gradually widening out until the ridge dis-

appears, or by considering a re-entrant edge as gradually

widening out until the dint disappears. Or we may
suppose the projecting edge to go on widening otft till

it becomes smooth, and then to turn into a re-entrant

edge. We might represent this process to the eye-by

putting into a wheel of life a succession of pictures like

that in fig. 16, and then rapidly turning the wheel. We
should see the two spheres, at first separate, coalesce

into a single solid in (ii) and (iii), then form one sphere as

at (iv), then contract into a smaller and smaller lens at

(v), (vi), (vii). The important thing to notice is that the

single sphere at (iv) is a step in the process ; or, what
is the same thing, that a smooth-point is a particular case

of an edge-point coming between the projecting and the re-

entrant edges. As being this particular case of the

edge-point, we say that at all smooth-points the sur-

faces are of the same shape.

§ 4. The Characteristics of Surface Boundaries.

Eemarks like these that we have made about solid

bodies or portions of space may be made also about



64 THE COMMON SENSE OP THE EXACT SCIENCES.

portions of surface. Only we cannot now say that the

shape of a piece of surface depends wholly on that of

the curve which bounds it. Still the only thing that

remains for us to consider is the shape of the boundary,

because we have already discussed (so far as we profit-

ably can at present) the shape of the included surface.

We shall find it useful to restrict ourselves still

further, and only consider those boundaries which have

no rough points of the surface in them. Thus on the

surface of the cube we will only consider portions which
are entirely included in one of the plane faces ; on the

surface of the cylinder, only portions which are entirely

included in one of the flat faces, or in the curved part,

or which include one of the flat faces and part of the

curved portion.

This being so, the characteristics which we have to

remark in the boundaries of pieces of surface may be
sufficiently studied by means of figures drawn on paper.

We may bend the paper to assure ourselves that the

same general properties belong to figures on a cylinder,

and to make our ideas quite distinct it is worth while
to draw some on a sphere or other such surface.

In fig. 17 are some patches of surface ; a square, a
three-cornered piece, and two overlapping circles. For

1^ 99
Fio. 17.

distinctness, the part where the circles overlap is left

white, the rest being made black.

Attending now specially to the boundary of these
patches, we observe that it consists of smooth parts and
of corners or angles. Some of these corners project
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and some are re-entrant. The pieces of surface are not

solid moveable things like the portions of space we

considered before, but we can in a measure imitate our

previous experiments by cutting out the figures with a

penknife, so as to leave their previous positions marked

by the holes. We shall then find, on applying the cut-

out pieces to one another, or to the holes, that at all

smooth-points the boundaries fit one another in a cer-

tain sense. Namely, if we place two smooth-points in

contact we cannot roll one figure on the other without

separating these points ; whereas if we place a sharp-

point (or angle) on a smooth-point we can roll one figure

on the other without separating the points. If we

attempt to put two angles together without letting the

figures overlap, the same things may happen that we

found true in the case of the edges of solid bodies.

Suppose, for example, that we try to put an angle of the

square into one of the re-entrant angles of the figure

made by the two overlapping circles. If the re-entrant

angle is too sharp, we shall not be able to get it in at

all; this is the case of fig. 12. If it is wide enough,

the square will be able to rock in it ; this is the case of

fig. 13. Between these two there is an intermediate

case in which one angle just fits the other ; actual

contact takes place, and no rocking is possible. In
this case we say that the two angles are of the same

shape, or that they are equal to one another.

From all this we are led to conclude that shape is a

matter of angles, and that identity of shape depends on
equality of angle. We dealt with the size of a body by

considering a simple case of it, viz. length or distance,

and by measuring a sufiicient number of lengths. in dif-

ferent directions could find out all that is to be known

about the size of a body. It is, indeed, also true that a
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knowledge of all the lengths which can be measured

in a bodj would carry with it a knowledge of its shape;

but still length is not in itself an element of shape.

That which does the same for us in regard to shape

that length does with regard to size, is angle. In other

words, just as we say that two bodies are of the same

size if to any line that can be drawn in the one there

corresponds an exactly equal line in the other, so we say

that two bodies are of the same shape, if to every angle

that can be drawn on one of them there corresponds an

exactly equal angle on the other.

Just as we measured lengths by a stick or a piece of

tape so we measure angles with a pair of compasses

;

and two angles are said to be equal when they fit the

same opening of the compasses. And as before, the

statement that a thing can be moved about without

alteriiig its shape maybe shown to amount only to this,

that two angles which fit in one place will fit also in

another, no matter how they have been brought from

the one place to the other.

§ 5. The Plane and the Straight Line,

We have now to describe a particular kind of surface

and a particular kind of line with which geometry is

very much concerned. These are the ;plane surface and
the straight line.

The plane surface may be defined as one which is of
the same shape all over and on both sides. This pro-
perty of it is illustrated by the method which is practi-

cally used to make such a surface. The method is to

take three surfaces and grind them do-wn until any two
will fit one another all over. Suppose the three surfaces
to be A, B, c ; then, since a will fit b, it follows that the
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space outside A is of the same shape as the space inside

B ; and because b will fit o, that the space inside b is of

the same shape as the space outside o. It follows there-

fore that the space outside a is of the same shape as the

space outside c. But since a will fit o when we put

them together, the space inside a is of the same shape

as the space outside c. But the space outside o was

shown to he of the same shape as the space outside a ;

consequently the space outside A is of the same shape as

the space inside ; and so, if three surfaces are ground

together so that each pair of them will fit, each of them
becomes a surface which is of the same shape on both

sides : that is to say, if we take a body which is partly

bounded by a plane surface, we can slide it all over this

surface and it will fit everywhere, and we may also turn

it round and apply it to the other side of the surface

and it will fit there too. This property is sometimes

more technically expressed by saying that a plane is a

surface which divides space into two congruent regions.

A straight line may be defined in a similar way. It

is a division between two parts of a plane, which two
parts are, so far as the dividing line is concerned, of the

same shape ; or we may say what comes to the same
effect, that a straight line is a line of the same shape all

along and on both sides.

A body may have two plane surfaces ; one part of it,

that is, may be bounded by one plane and another part

by another. If these two plane surfaces have a common
edge, this edge, which is called their intersection, is a
straight line. We may then, if we like, take as our
definition of a straight line that it is the intersection of
two planes.

It must be understood that when a part of the sur-

face of a body is plane, this plane may be conceived as
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extending beyond the body in all directions. For

instance, the tipper surface of a table is plane and

horizontal. Now it is quite an intelligible question to

ask about a point which is anywhere in the room -whether

it is higher or lower than the surface of the table. The

points which are higher will be divided from those which

are lower by an imaginary surface which is a continua-

tion of the plane surface of the table. So then we are

at liberty to speak of the line of intersection of two

plane surfaces of a body whether these are adjacent

portions of surface or not, and we may in every case

suppose them to meet one another and to be prolonged

across the edge in which they meet.

Leibniz, who. was the first to give these definitions

of a plane and of a straight line, gave also another

definition of a straight line. If we fix two points of a

body, it will not be entirely fixed, but it will be able to

turn round. All points of it will then change their

position excepting those which are in the straight line

joining the two fixed points; and Leibniz accordingly

defined a straight line as being the aggregate of those

points of a body which are unmoved when it is turned

about with two points fixed. If we suppose the body to

have a plane face passing through the two fixed points,

this definition will fall back on the former one which
defines a straight line as the intersection of two planes.

It hardly needs any words to prove that the first

two definitions of a plane are equivalent ; that is, that

two surfaces, each of which is of the same shape all over

and on both sides, will have for their intersection a line

which is of the same shape all along and on both sides.

For if we slide each plane upon itself it will, being of
the same shape all over, occupy as a whole the same
unchanging position (i.e. wherever there was part of
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tlie planes before there will be part, though a different

part, of the planes now), so that their line of inter-

section occupies the same position throughout (though

the part of the line occupying any particular position

is different). The line is therefore of the same shape

all along. And in a similar way we can, without

changing the position of the planes as a whole, move

them so that the right-hand part of each shall become

the left-hand part, and the upper part the lower ; and

this will amount to changing the line of intersection

end for end. But this line is in the same place after

the change as before ; and it is therefore of the same

shape on both sides.

From the first definition we see that two straight

lines cannot coincide for a certain distance and then

diverge from one another. For since the plane surface

is of the same shape on the two sides of a straight line,

we may take up the surface on one side and turn it

over and it will fit the surface on the other side. If

this is true of one of our supposed straight lines, it is

quite clear that it cannot at the same time be true of the

other; for we must either be bringing over more to fit

less, or less to fit more.

§ 6. Properties of Triangles.

We can now reduce to a more precise form our first

observation about space, that a body may be moved
about in it without altering its size or shape. Let us

suppose that oun body has for one of its faces a triangle,

that is to say, the portion of a plane bounded by three

straight lines. We find that this triangle can be moved
into any new position that we like, while the lengths of

its sides and its angles remain the same ; or we may
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put the statement into the form that when any triangle

is once drawn, another triangle of the same size and

shape can be drawn in any part of space.

From this it wiU follow that if there are two triaCngles

which have a side of the one equal to a side of the other,

and the angles at the ends of that side in the one equal

to the angles at the ends of the equal side in the other,

then the two triangles are merely the same triangle in

different positions ; that is, they are of the same size

and shape. For if we take the first triangle and so far

put it into the position of the second that the two equal

sides coincide, then because the angles at the ends of

the one are respectively equal to those at the ends of

the other, the remaining two sides of the first triangle

will begin to coincide with the remaining two sides of

the second. But we have seen that straight lines cannot

begin to coincide and then diverge ; and consequently

these sides will coincide throughout and the triangles

will entirely coincide.

Our second observation, that we may have things

which are of the same shape but not of the same size,

may also be made more precise by application to the

case of triangles. It tells us that any triangle may be

magnified or diminished to any degree without altering
|

its angles, or that if a triangle be drawn, another

triangle having the same angles may be drawn of any
size in any part of space.

From this statement we are able to deduce two very
important consequences. One is, that two straight

lines cannot intersect in more points than one ; and the
other that, if two straight lines can be drawn in the
same plane so as not to intersect at all, the angles they
make with any third line in their plane which meets
them, will be eqiial.
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To prove the first of these, let ab and ao (fig. 18) be

two straight lines which meet at a. Draw a third line

BO, meeting both ofthem, and the three lines then form a

triangle. If we now make a point p travel along the line

ab it must, in virtue of our second observation, be always

possible to draw through this point a line which shall

meet a o in q so as to make a triangle a p Q of the same

shape as abc. But if the line ao were to meet ab in

some other point D besides A, then through this point

D it would clearly not be possible to draw a line so as

to make a triangle at all. It follows then that such

a point as D does not exist, and in fact that two

straight lines which have once met must go on diverg-

ing froni each other and can never meet again.'

To prove the second, suppose that the lines a c and

BD (fig. 19) are in the same plane, and are such as

Fio. 19.

never to meet at all (in which case they are called

parallel), while the line a b meets them both. If we
make a point p travel along b a towards a, and, as it

moves, draw through it always a line making the same
angle with b a that b d makes with b a, then this

• This property might also be deduced from the first definition of a
straight line, by the method already used to show that two straight lines

cannot coincide for part of their length and then diverge.
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moving line can never meet A o until it wholly coincides

with it. For if it can, let p Q be such a position of

the moving line ; then it is possible to draw through

B a line which, with A b and A c, shall form a tri-

angle of the same shape as the triangle A p Q. But

for this to be the case the line drawn through b must

make the same angle with a b that P Q makes with, it,

that is, it must be the line b d. And the three lines b d,

B A, A cannot form a triangle, for B d and A c never

meet. Consequently there can be no such triangle as

A p Q, or the moveable line can never meet A c until it

entirely coincides with it. But since this line always

makes with B A the same angle that b d does, and in

one position coincides with A c, it follows that A c

makes with b a the same angle that b d does. This is

the famous proposition about parallel lines.'

The first of these deductions will now show us that

if two triangles have an angle of the one equal to an

angle of the other and the sides containing these angles

respectively equal, they must be equal in all particulars.

For if we take up one of the triangles and put it down

' Two straight lines which cut one another form at the point where they
cross four angles which are eqnal in pairs. It is often necessary to dis-

tinguish between the two different angles which the lines make with one
another. This is done by the understanding that a b shall mean the line

« (")

drawn from A to b, and b a the line drawn from b to a, so that the anglfi

between A B an^ D (i) is tlie angle bod, but the angle between ba and
c D (ii) is the angle boa.

So the angle spoken of above as made by A c with e a is not the angle
CAB (which is clearly, in general, unequal to the- angle dba), but the
angle c A e, where e is a point in b a produced through a.
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on the other so that these angles coincide and equal

sides are on the same side of them, then the con-

taining sides will begin to coincide, and cannot there-

fore afterwards diverge. But as they are of the same

length in the one triangle as they are in the other, the

ends of them belonging to the one triangle will rest

upon the ends belonging to the other,, so that the re-

maining sides of the two triangles will have their ends in

common and must therefore coincide altogether, since

otherwise two straight lines would meet in more points

than one. The one triangle will then exactly cover the

other ; that is to say, they are equal in all respects.

In the same way we may see that if two triangles

have two angles in the one equal to two angles in the

other, they are of the same shape. Tor one of them

can be magnified or diminished until the side joining

these two angles in it becomes of the same length as

the side joining the two corresponding angles in the

other; and as no alteration is thereby made in the

shape of the triangle, it will be enough for us to prove

that the new triangle is of the same shape as the other

given triangle. But if we now compare these two, we
see that they have a pair of corresponding sides which

have been made equal, and the angles at the ends of

these sides equal also (for they were equal in the

original triangles, and have not been altered by the

change of size), so that we fall back on a case already

considered, in which it was shown that the third angles

are equal, and the triangles consequently of the same
shape.

If we apply these propositions not merely to two
different triangles but to the same triangle, we find

that if a triangle has two of its sides equal it will have

the two angles opposite to them also equal ; and that.
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conversely, if it has two angles eqnal it will liave tlie two

sides opposite to them also equal ; for in each of these

cases the triangle may be turned oyer and made to fit

itself. Such a triangle is called isosceles.

The theorem about parallel lines which we deduced

from our second assumption about space leads very

easily to a theorem of especial importance, viz. that

the three angles of a triangle are together equal to two

right angles.

If we draw through A, a corner of the triangle

ABO (fig. 20), a line d A e, making with the side A o

Fig. 20.

the same angle as b o mates with it, this line will,

as we have proved, never meet b o, that is, it will be

parallel to it. It will consequently make with A b the

same angle as b c makes with it,' so that the three

angles A b c, b A o, and boa are respectively equal to

the angles e a b, b a o, and o A d, and these three make
up two right angles.

Another statement of this theorem is sometimes of

use.

If the sides of a triangle be produced, what are

called the exterior angles of the triangle are formed. If,

for example, the side b o of the triangle ABC (fig. 21)

is produced beyond o to d, a c d is an exterior angle of

the triangle, while of the interior angles of the triangle

A B is said to be adjacent, and cab and A B c to be

opposite to this exterior angle. It is clear that as

' The convention mentioned in the last footnote must be lemembered.
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each side of the triangle may be produced in two

directions, any triangle has six exterior angles.

The other form into which our proposition may

be thrown is that either of the exterior angles of a

triangle is equal to the sum of the two interior angles

opposite to it. For, in the figure, the exterior angle

A D, together with A c B, makes two right angles, and

it must therefore be equal to the sum of the two angles

which also make up two right angles with A b.

§ 7. Properties of Circles; Belated Circles and Triangles.

We may now apply this proposition to prove an im-

portant property of the circle, viz. that if we take two

fixed points on the circumference of a circle and join

them to a third point on the circle, the angle between

the joining lines will depend only upon the first two

points and not at all upon the third. If, for example,

we join the points A, b (fig. 22) to o we shall show that,

wherever on the ^circumference may be, the angle

A c B is always one-half of A o b ; o being the centre of

the circle.

Let produced meet the circumference in d.

Then since the triangle o A c is isosceles, the angles o a o

and OCA are equal, and so for a similar reason are the

angles o B o and o c b.

But we have just shown that the- exterior angle

A D is equal to the sum of the angles o a a and oca;
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and since these are equal to one another it must be

double of either of them, say of o c A. Similarly the

angle b o D is double of o o b, and consequently a o b is

double of A c B.

In the case of the first figure (i) we have taken the

sum of two angles each of which is double of another,

and asserted that the sum of the first pair is twice the

sum of the second pair ; in the case of the second

figure (ii) we have taken the difference of two angles

Fig. 22.

each of which is double of another, and asserted that

the difference of the first pair is twice the difference of

the second pair.

Since therefore A c b is always half of A o b, wher-

ever c may be placed in the upper of the two segments

into which the circle is divided by the straight line A b,

we see that the magnitude of this angle depends only

on the positions of a and b, and not on the position of

0. But now let us consider what will happen if c is in

the lower segment of the circle. As before, the tri-

angles o A and B c (fig. 23) are isosceles, and the

angles d o a and dob are respectively double of c a

and o c B. Consequently, the whole angle A o b formed

by making o A turn round o into the position o b, so as

to pass through the position o d (in the way, that is,
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in which the hands of a clock turn), this whole angle is

double of A B.

By our previous reasoning the angle A d B, formed

by joining A and b to d, is one-half of the angle A o b,

which is made by turning o b towards o a as the hands

of a clock move. The sum of these two angles, each

of which we have denoted by A o b, is a complete re-

volution about the point o ; in other words, is foiir

Fio. 23.

right angles. Hence the sum of the angles A D b, ao b,

which are the halves of these, is two right angles. Or

we may put the theorem otherwise, and say that the

opposite angles of a four-sided figure whose angles lie

on the circumference of a circle are together equal to

two right angles.

We appear therefore to have arrived at two dif-

ferent statements according as the point o is in the

one or the other of the segments into which the

circle is divided by the straight line a b. But these

statements are really the same, and it is easy to include

them in one proposition. If we produce a o in the last

figure to E, the angles a c b and b c e are together equal

to two right angles ; and consequently b c e is equal to

AD B, This angle b c E is the angle through which c b

must be turned in the way the hands of a clock move.
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so that its direction may coincide witli that of A c. But

we may describe in precisely tte same words tlie angle

A B in fig. 22, where c was in the upper segment of the

circle ; so that we may always put the theorem in these

words :—If A and b are fixed points on the circumfer-

ence of a circle, and c any other point on it, the angle

through which c B must be turned clockwise in order to

coincide with c a or AC, whichever happens first, is

equal to half the angle through which o b must be

turned clockwise in order to coincide with o A.

We shall now make use of this to prove another in-

teresting proposition. If, three points d, e, f (fig. 24)

Fio. 24.

be taken on the sides ot a triangle a b c, d being on b o,

E on c A, p on A B, then three circles can be drawn
passing respectively through A F e, b d p, c ed. These
three circles can be shown to meet in the same point o.

For let in the first place stand for the intersection of
the two circles ape and bfd, then the angles pae
and FOE make up two right angles, and so do the
angles d o p and d b p. But the three angles at o make
four right angles, and the three angles of the triangle
ABO make two right angles : and of these six angles
two pairs have been shown to make up two right
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angles eacli. Therefore the remainiBg pair, viz. the

angles doe and doe, make up two right angles. It

follows, that the circle which goes through the points

E D will pass through o, that is, the three circles all

meet in this point.

There is no restriction imposed on the positions of

the points d, e, p,' they may be taken either on the sides

Fio. 25,

of the triangle or on those sides produced, and in par-

ticular we may take them to lie on any fourth straight

line D E p ; and the theorem may he stated thus :—If

any four straight lines be taken (fig. 25), one of which

meets the triangle a b o formed by the other three in

the points d, e, p, then the circles through the points

' If either of tlie points d, b, p, is taken on a side produced, the proof

given above will not apply literally ; but the necessary changes are slight

and obvious.
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APE, BDF, OBD meet in a point. But there is no

reason why we should not take A p E as the triangle

formed by three lines, and the fourth line D C B as the

line which cuts the sides of this triangle. The propo-

sition is equally true in this case, and it follows that

the circles through abc, ecd, fed will meet in one

point. This must be the same point as before, since

two of the circles of this set are the same as two of the

previous set; consequently all four circles meet in a

point, and we can now state our proposition as follows :

Given four straight lines, there can be formed from

them four triangles by leaving out each in turn ; the

circles which circumscribe these four triangles meet in

a point.

This proposition is the third of a series.

If we take any two straight lines they determine a

point, viz. their point of intersection.

If we take three straight lines we get three such

points of intersection ; and these three determine a

circle, viz. the circle circumscribing the triangle formed

by the three lines.

Four straight lines determine four sets of three

lines by leaving out each in turn ; and the four circles

belonging to these sets of three meet in a point.

In the same way five lines determine five sets of

four, and each of these sets of four gives rise, by the

proposition just proved, to a point. It has been shown
by Miquel, that these five points lie on the same circle.

And this series of theorems has been shown ' to be

endless. Six straight lines determine six sets of five by
leaving them out one by one. Each set of five has, by

' By Prof. Clifford himself in the Oxford,, Cambridge, and Dublin
Messenger of Mathematics, vol. v. p. 12i. See his Mathematical Papers,

pp. 61-54.
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Miquel's theorem, a circle belonging to it. These six

circles meet in the same point, and so on for ever. Any
even number (2w) of straight lines determines a point

as the intersection of the same number of circles. If

we take one line more, this odd number {2n+l) deter-

mines as many sets of 2n lines, and to each of these

sets belongs a point ; these 2n+ l points lie on a circle.

§ 8. The Conic Sections.

The shadow of a circle cast on a flat surface by a

luminous point may have three different shapes. These

are three curves of great historic interest, and of the

utmost importance in geometry and its applications.

The lines we have so far treated, viz. the straight line

and circle, are special cases of these curves ; and we may
naturally at this point investigate a few of the properties

of the more general forms.

If a circular disc be held in any position so that it

is altogether below the flame of a candle, and its shadow

be allowed to fall on the table, this shadow will be of

an oval form, except in two extreme cases, in one of

which it also is a circle, and in the other is a straight

line. The former of these cases happens when the disc

is held parallel to the table, and the latter when the

disc is held edgewise to the candle ; or, in other words,

is so placed that the plane in which it lies passes

through the luminous point. The oval form which,

with these'two exceptions, the shadow presents is called

an ellipse (i). The paths pursued by the planets roijnd

the sun are of this form.

If the circular disc be now held so that its highest

point is just on a level with the flame of the candle, the

shadow will as before be oval at the end near the candle;
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but instead of closing up into another oval end as we

move away from the candle, the two sides of it will con-

tinue to open out without any limit, tending however

to become more and more parallel. This form of the

shadow is called a. parabola (ii). It is very nearly the

orbit of many comets, and is also nearly represented by
the path of a stone thrown up obliquely. If there were-

no atmosphere to retard the motion of the stone it

would exactly describe a parabola.

Fio. 26.

If we now hold the circular disc higher up still, so

that a horizontal plane at the level of the candle flame
divides it into two parts, only one of these parts will

cast any shadow at all, and that will be a curve such
as is shown in the figure, the two sides of which
diverge in quite different directions, and do' not, as in

th^case of the parabola, tend to become parallel (iii).

But although for physical purposes this curve is the
whole of the shadow, yet for geometrical purposes it is

not the whole. We may suppose that instead of being
a shadow our curve was formed by joining the luminous
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point by straight lines to points round tlie edge of tlie

disc, and producing tliese straight lines until they meet

the table.

This geometrical mode of construction will equally

apply to the part of the circle which is above the candle

flame, although that does not cast any shadow. If we
join these points of the circle to the candle flame, and

prolong the joining lines beyond it, they will meet the

table on the other side of the candle, and will trace out

a curve there which is exactly similar and equal to the

physical shadow (iv) . We may call this the anti-shadow

or geometrical shadow of the circle. It is found that for

geometrical purposes these two branches must be con-

sidered as forming only one curve, which is called an

hyperbola. There are two straight lines to which the

ciu-ve gets nearer and nearer the further away it goes

from their point of intersection, but which it never

actually meets. For this reason they are called asymp-

totes, from a Greek word meaning ' not falling to-

gether.' These lines are parallel to the two straight

lines which join the candle flame to the two points of

the circle which are level with it.

We saw some time ago that a surface was formed

by the motion of a line. Now if a right line in its

motion always passes through one fixed point, the surface

which it traces out is called a cone, and the fixed point

is called its vertex. And thus the three curves which we
have just described are called conic sections, for they

may be made by cutting a cone by a plane. In fact, it

is in this way that the shadow of the circle is formed

;

for if we consider the straight lines which join the

candle flame to all parts of the edge of the circle we see

that they form a cone whose vertex is the candle flame

and whose base is the circle.
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"We must suppose tliese lines not to end at the flame

but to be prolonged through it, and we shall so get

what would commonly be called two cones with their

points together, but what in geometry is called one

conical surface having two sheets. The section of this

conical surfac^/vby the horizontal plane of the table is

the shadow of the circle ; the sheet in which the circle

lies gives us the ordinary physical shadow, the other

sheet (if the plane of section meets it) gives what we

have called the geometrical shadow.

The consideration of the shadows of curves is a

method much used for finding out their properties, for

there are certain geometrical properties which are

always common to a figure and its shadow. For ex-

ample, if we draw on a sheet of glass two curves which

cut one another, then the shadows of the two curves

cast through the sheet of glass on the table wiU also cut

one another. The shadow of a straight line is always

a straight line, for all the rays of light from the flame

through, various points of a straight line lie in a plane,

and this plane meets the plane surface of the table in a

straight line which is the shadow. Consequently if

any curve is cut by a straight line in a certain number

of points, the shadow of the curve will be cut by the

shadow of the straight line" in the same number of points.

Since a circle is cut by a straight line in two points or

in none at all, it follows that any shadow of a circle

must be cut by a straight line in two points or in none

at all.

When a straight line touches a circle the two points

of intersection coalesce into one point. We see then

that this must also be the case with any shadow of the

circle. Again, from a point outside the circle it is pos-

sible to draw two lines which touch the circle j so from
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a'point outside either of the three curves which we have

just described, it is possible to draw two lines to touch

the curve. From a point inside the circle no tangent

can be drawn to it, and accordingly no tangent can be

drawn to any conic section from a point inside it.

This method of deriving the properties of one curve

from those of another of which it is the shadow, is

called the method ot projection.

The particular case of it which is of the greatest

use is that in which we suppose the luminous point

by which the shadow is cast to be ever so far away.

Suppose, for example, that the shadow of a circle held

obliquely is cast on the table by a star situated directly

overhead, and at an indefinitely great distance. The

lines joining the star to all the points of the circle will

then be vertical lines, and they will no longer form a

cone but a cylinder. One of the chief advantages of

this kind of projection is that the shadows of two

parallel lines will remain parallel, which is not generally

the case in the other kind of projection. The shadow

of the circle which we obtain now is always an ellipse j

and we are able to find out in this way some very

important properties of the curve, the corresponding

properties of the circle being for the most part evident

at a glance on account of the symmetry of the figure.

For instance, let us suppose that the circle whose

shadow we are examining is vertical, and let us take a

vertical diameter of it, so that the tangents at its ends

are horizontal. It will be clear from the symmetry of

the figure that all horizontal lines in it ai*e divided into

two equal parts by the vertical diameter, or we may say

that the diameter of the circle bisects all chords parallel

to the tangents at its extremities. When the shadow

of this figure is cast by an infinitely distant star (which
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we must not now suppose to be directly overhead, for

then the shadow would be merely a straight line), the

point of bisection of the shadow of any straight lino

is the shadow of the middle point of that line, and thus

we learn that it is true of the ellipse that any line

which joins the points of contact of parallel tangents

bisects all chords parallel to those tangents. Such a

line is, as in the case of the circle, termed a diameter.

Since the shadow of a diameter of the circle is a dia-

meter of the ellipse, it follows that all diameters of the

ellipse pass through one and the same point, namely,

the shadow of the centre of the circle ; this common
intersection of diameters is termed the centre also of the

ellipse.

Again, a horizontal diameter in the circle just con-

sidered will bisect all vertical chords, and thus we
see that if one diameter bisects all chords parallel to a

second, the second will bisect all chords parallel to the

first.

The method of projection tells us that this is also

true of the ellipse. Such diameters are called conjugate

diameters, but they are no longer a,t right angles in the

ellipse as they were in the case of the circle.

Since the shadow of a circle which is cast in this

way by an infinitely distant point is always an ellipse,

we cannot use the same method in order to obtain the

properties of the liyperbola. But it is found by other

methods that these same statements are true of the

hyperbola which we have just seen to be true of the

ellipse. There is however this great difference be-

tween the two curves. The centre of the ellipse is

inside it, but the centre of the hyperbola is outside it.

Also aU lines drawn through the centre of the ellipse

meet the curve in two points, but it is only certain
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lines through the centre of the hyperbola which meet

the curve at all. Of any two conjugate diameters of

the hyperbola one meets the curve and the other does

not. But it still remains true that each of them bisects

all chords parallel to the other.

§ 9. On Surfaces of the Second Order.

We began with the consideration of the siDiplest.

kind of line and the simplest kind of surface, the

straight line and the plane ; and we have since found

out some of the properties of four different curved lines

—the circle, the ellipse, the parabola, and the hyperbola.

Let lis now consider some curved surfaces ; and first,

the surface analogous to the circle. This surface is the

sphere. It is defined, as a circle is, by the property

that all its points are at the same distance from the

centre.

Perhaps the most important question to be asked

about a surface is. What are the shapes of the curved

lines in which it is met by other surfaces, especially

in the case when these other surfaces are planes ? Now a
plane which cuts a sphere cuts it, as can easily be shown,
in a circle. This circle, as we move the plane further and
further away from the centre of the sphere, will get

smaller and smaller, and will finally contract into a

point. In this case the plane is said to touch the

sphere; and we notice a very obvious but important
fact, that the sphere then lies entirely on one side of

the plane. If the plane be moved still further away
from the centre it will not meet the sphere at all.

Again, if we take a point outside the sphere we can
draw a number of planes to pass through it and touch the

sphere, and all the points in which they touch it lie on
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a circle. Also a cone can be drawn whose vertex is

the point, and which touches the sphere all round the

circle in which these planes touch it. This is called

the tangent-cone of the point. It is clear that from a

point inside the sphere no tangent-cone can be drawn.

Similar properties belong also to certain other sur-

faces which resemble the sphere in the fact that they

are met by a straight line in two points at most ; such

surfaces are on this account called of the second order.

Just as we may suppose an ellipse to be got from

a circle by pulling it out in one direction, so we may
get a spheroid from a sphere either by pulling it out so

as to make a thing like an egg, or by squeezing it so

as to make a thing like an orange. Each of these

forms is symmetrical about one diameter, but not about

all. A figure like an orange, for example, or like the

earth, has a diameter through its poles less than any

diameter in the plane of its equator, but all diameters in

its equator are equal. Again, a spheroid like an egg

has all the diameters through its equator equal to one

another, but the diameter through its poles is longer

than any other diameter.

If we now take an orange or an egg and make its

equator into an ellipse instead of a circle, say by pull-

ing, out the equator of the orange or squeezing the

equator of the egg, so that the surface has now three

diameters at right angles all unequal to one another,

we obtain what is called an ellipsoid. This surface

plays the same part in the geometry of surfaces that the

ellipse does in the geometry of curves. Just as every
plane which cuts a sphere cuts it in a circle, so every
plane which cuts an ellipsoid cuts it in an ellipse. It

is indeed possible to cut an ellipsoid by a plane so that
the section shall be a circle, but this must be regarded
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as a particular kind of ellipse, viz. an ellipse with,

two equal axes. Again, just as was the case with the

sphere, we can draw a set of planes through an exter-

nal point all of which touch the ellipsoid. Their points

of contact lie on a certain ellipse, and a cone can be

drawn which has the external point for its vertex and

touches the ellipsoid all round this ellipse. The ellip-

soid resembles a sphere in this respect also, that when

FlO. 27.

it is touched by a plane it lies wholly on one side of

that plane.

There are also surfaces which bear to the hyperbola

and the parabola relations somewhat similar to those

borne to the oircle by the sphere, and to the ellipse by

the ellipsoid. We will now consider one of them, a

surface with many singular properties.

Let A B c D be a figure of card-board having four

equal sides, and let it be half cut through all along b d.
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SO tliat the triangles A b D, c b B can turn about the line

B D. Then let holes be made along the four sides of it at

equal distances, and let these holes be joined by threads

of silk parallel to the sides. If now the figure be bent

about the line b d and the silks are pulled tight it will

present an appearance like that in fig. 27, resembling

a saddle, or the top of a mountain pass.

This surface is composed entirely of straight lines,

and there are two sets of these straight Knes ; one set

which was originally parallel to A b, and the other set

which was originally parallel to A d.

A section of the figure through a c and the middle

point of b D will be a parabola with its concave side

turned upwards.

A section through b d and the middle point of A c

will be another parabola with its concave side turned

downwards, the common vertex of these pai'abolas

being the summit of the pass.

The tangent plane at this point will cut the surface

in two straight lines, while part of the surface will be

above the tangent plane and part below it. We may
regard this tangent plane as a horizontal plane at the

top of a mountain pass. If we travel over the pass, we

come up on one side to the level of the plane and then

go down on the other. But if we go down from a

mountain on the right and go up the mountain on the

left, we shall always be above the horizontal plane. A
section by a horizontal plane a little above this tangent

plane will be a hyperbola whose asymptotes will be

parallel to the straight lines in which the tangent plane

meets the surface. A section by a horizontal plane a

little below will also be a hyperbola with its asymptotes

parallel to these lines, but it will be situated in the

other pair of angles formed by these asymptotes. If
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we suppose the cutting plane to move downwards from

a position above the tangent plane (remaining always

horizontal), then we shall see the two branches of the

first hyperbola approach one another and get sharper

and sharper until they meet and become simply two

crossing straight lines. These lines will then have

their comers rounded off and wUl be divided in the

other direction and open out into the second hyper-

bola.

This leads us to suppose that a pair of intersecting

straight lines is only a particular ease of a hyperbola,

and that we may consider the hyperbola as derived

from the two crossing straight lines by dividing them
at their point of intersection and rounding off the

comers.

§ 10. How to form Curves of the Third and Higher Orders.

The method of the preceding paragraph may be ex-

tended so as to discover the forms of new curves by
putting known curves together. By a mode of expres-

sion which sounds paradoxical, yet is found convenient,

a straight line is called a curve of the first order, because

it can be met by another straight line in only one
point ; but two straight lines taken together are called

a curve of the second order, because they can be met
by a straight line in two points. The circle, and its

shadows, the ellipse, parabola, and hyperbola, are also

called curves of the second order, because they can be
met by a straight line in two points, but not in more
than two points; and we see that by this process of

rounding off the corners and the method of projection

we can derive all these curves of the second order from

a pair of straight lines.
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A similar process enables us to draw curves of tte

third order. An ellipse and a straight line taken to-

gether form a curve of the third order. If now we

round off the corners at both the points where they

meet we obtain (fig. 28) a curve consisting of an oval

and a sinuous portion called a ' snake.' Now just as

when we move a plane which cuts a sphere away from

the centre, the curve of intersection shrinks up into a

o

Via. 28.

(i.) Full loop and snake.
(iiO Shiunk loop and snake.

(iii.) Tlie loop ha<! shrank to a point.

(iv.) Snake only.

point and then disappears, so we can vary our curve of

the third order so as to make the oval which belongs to

it shrink up into a point, and then disappear altogether,

leaving only the sinuous part, but no variation will get

rid of the ' snake.'

We may, if we like, only round, off the corners at

one of the intersections of the straight line and the

ellipse, and we then have a curve of the third order

crossing itself, having a knot or double point (fig. 29)

;

and we can further suppose this loop to shrink up, and
the curve will then be found to have a sharp point or

cusp.
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It was sliown by Newton that all carves of the third

oixler might he derived as shadows from the five forms

which we have just mentioned, viz. the oval and snake,

the point and snake, the snake alone, the form with a

knot, and the form with a cusp.

In the same way curves of the fourth order may be

got by combining together two ellipses. If we suppose

Fig. 30.

them to cross each other in four points we may round

off all the corners at once and so obtain two different

forms, either four ovals all outside one another or an
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oval with four dints in it, and anotlier oval inside it

(fig. 30).

But the number of forms of curves of the fourth

order is so great that it has never yet been completely

catalogued; and curves of higher ordei'S are of still

more varied shapes.



CHAPTEE III.

QtJAlTTITT.

§ 1. The Measurement of Quantities.

We considered at the beginning of tlie first chapter,

on Number, the process of counting things which are

separate from one another, such as letters or men or

sheep, and we found it to be a fundamental property of

this counting that the result was not affected by the

order in which the things to be counted were taken

;

that one of the things, that is, was as good as another

at any stage of the process.

We may also count things which are not separate

but all in one piece. For example, we may say that a

room is sixteen feet broad. And in order to count the

number of feet in the breadth of this room we should

probably take a foot rule and measure off first a foot

close to the wall, then another beginning where that

ended, and so on until we reached the opposite wall.

Now when these feet are thus marked off they may,
just like any other separate things, be counted in

whatever order we please, and the number of them
will always be sixteen.

But this is not all the variety in the process of

counting which is possible. For suppose that we take

a stick whose length is equal to the breadth of the

room. Then we may cut out a foot of it wherever we
please, and join the ends together. And if we then
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cut out another foot from any part of the remainder

and join the ends, and repeat the process fifteen times,

we shall find that there will always be a foot length

left when the last two ends are joined together. So,

when we are counting things that are all in one piece,

like the length of the stick or the breadth of the room,

not only is the order in which we count the feet im-

material, but also the position of the actual feet which

we count.

Again, if we say that a packet contains a pound, or

sixteen ounces, of tea, we mean that if we take any

ounce of it out, then any other ounce out of what is

left, and so on until we have taken away fifteen ounces,

there will always be an ounce left.

If I say that I have been writing for fifteen minutes

it will of course have been impossible actually to count

these minutes except in the order in which they really

followed one another, but it will still be true that, if

any separate fourteen minutes had been marked off

during that interval of time, the remainder of it, made

up of the interstices between these minutes, would

amount on the whole to one minute.

In all these cases we have been countrag things that

hang together in one piece ; and we find that we may
choose at will not only the order of counting but even

the things that we count without altering the result.

This process is called the measurement of quantities.

But now suppose that when we measure the breadth

of a room we find it to be not sixteen feet exactly, but

sixteen feet and something over. It may be sixteen

feet and five inches. And if so, in order to measure

the something over, we merely repeat the same pro-

cess as before ; only that instead of counting feet we
count inches, which are smaller than feet. If the
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breadth is found not to be an exact number of inches,

but that something is left beside the five inches, we
might measure that in eighths of an inch. There

might, for example, be three eighths of an inch over.

But there is no security that the process will end here
;

for the breadth of the room may not contain an exact

number of eighths of an inch. Still it may be said

that nobody wants to know the breadth of a room more

exactly than to within an eighth of an inch.

Again, when we measure a quantity of tea it may be

nearly, but not exactly, sixteen ounces ; there may be

something over. This remainder we shall then measure

in grains. And here, as before, we are repeating the

same process by which we count things which are all in

one piece; only we count grains, which are smaller

things than ounces. There may still not be an exact

number of grains in the packet of tea, but then nobody
wants to know the weight of a packet of tea so nearly

as to a grain.

And it is the same with time. A geological period

may, if we are very accurate, be specified in hundreds
of centuries ; the length of a war in years ; the time of
departure of a train to within a minute ; the moment
of an eclipse to a second ; our care being, in each case,

merely to secure that the measurement is accui-ate

enough for the purpose we have in hand.

To sum up. There is in common use a rough or
approximate way of describing quantities, which con-
sists in saying how many times the quantity to be-

described contains a certain standard quantity, and in

neglecting whatever may remain. The smaller the

standard quantity is the more accurate is the process,

but it is in general no better than an approximation.

If then we want to describe a quantity accurately
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and not by a mere approximation, wliat are we to do ?

There is no way of doing this in words ; the only pos-

sible method is to carry about either the quantity itself

or some other quantity which shall serve to represent

it. For instance, to represent the exact length and

breadth of a room we may draw it upon a scale of, say,

one inch to a foot and carry this drawing about.

Here we are representing a length by means of

another length; but it is not necessary to represent

weights by means of weights, or times by means of

times ; they are both in practice represented by lengths.

When a chemist, wishing to weigh with great delicacy,

has gone as near as he can with the drachms which he

puts into his scales, he hangs a little rider upon the

beam of the scale, and the distance of this rider from

the middle indicates how much weight there is over.

And, if we suppose the balance to be perfectly true,

and that no friction or other source of error has to be

taken into account, it indicates this weight with, real

accuracy.

Here then is a case in which a weight is indicated

by a length, namely, the distance from the centre of the

scale to the rider. Again, we habitually represent time

by means of a clock, and in this case the minute hand
moves by a succession of small jerks, possibly twice a

second. Such a clock will only reckon time in half

seconds, and can tell us nothing about smaller intervals

than this. But we may easily conceive of a clock in

which the motion of the minute hand is steady, and not

made by jerks. In this case the interval of time since

the end of the last hour will be accurately represented

by the length round the outer circle of the clock

measured from the top of it to the point of the minute
hand. And we notice that here also the quantity



QUANTITY. 99

which is measured in this way by a length is probably

not the whole quantity which was to be estimated, but

only that which remains over after the greater part has

been counted by reference to some standard quantity.

We may thus describe weight and time, and indeed

quantities of any kind whatever, by means of the lengths

of lines ; and in what follows, therefore, we shall only

speak of quantities of length as completely representing

measurable things of any sort.

§ 2. The Addition and Subtraction of Quantities.

For the addition of two lengths it is plainly sufiBcient

to place them end to end in the same line. And we
must notice that, as was the case with counting, so now,

the possible variety in the mode of adding is far greater

in the case of two quantities than in the case of two

numbers. For either of the lengths, the aggregate

of which we wish to measure, may be cut up into any

number of parts, and these may be inserted at any

points we please of the other length, without any change

in the result of our addition.

Or the Same may be seen, perhaps more clearly, by
reference to the idea of ' steps.' Suppose we have a

straight line with a mark upon it agreed on as a start-

ing-point, and a series of marks ranged at equal distances

along the line and numbered 1, 2, 8, 4. . . . Then any
particular number is shown by making an index point to

the right place on the line. And to add or subtract

any other number from this, we have only to make the

index move forwards or backwards over the correspond-

ing number of divisions. But in the case of lengths we
are not restricted to the places which are marked on the

scale. Any length is shown by carrying the index to a
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place whose distance from the starting-point is the

length in question (of which places there may be

as many as we please between any two points which

correspond to consecutive numbers), and another length

is added or subtracted by making the index take a

* step ' forwards or backwards of the necessary amount.

It is seen at once that, for quantities in general as

well as for numbers, a succession of given steps may
be made in any order we please and the result will

always be the same.

§ 3. The Multiplication and Division of Quantities.

We have already considered cases in which a quan-

tity is multiplied; that is to say, in which a certain

number of equal quantities are added together, a process

called the multiplication of one of them by that number.

Thus the length sixteen feet is the result of multiplying

one foot by sixteen.

We may now ask the inverse question : Given two

lengths, what number must be used to multiply one of

them in order to produce the other ? And it has been

implied in what we have said about the measurement of

quantities that it is only in special cases that we can find

a number which will be the answer to this question. If

we ask, for example, by what number a foot must be

multiplied in order to produce fifteen inches, the word

'number' requires to have its meaning altered and ex-

tended before we can give an answer. We know that

an inch must be multiplied by fifteen in order to become
fifteen inches. We may therefore first ask by what

a foot must be multiplied in order to produce an inch.

And the question seems at first absurd; because an

inch must be multiplied by twelve in order to give a
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foot, and a foot has to be, not multiplied at all, but

divided by twelve, in order to become an inch.

In order then to turn a foot into fifteen inches, we

must go through the following process ; we must divide

it into twelve equal parts and take fifteen of them ; or,

shortly, divide by twelve and multiply by fifteen. Or

we may produce the same result by performing the

steps of our process in the other order : we may first

multiply by fifteen, so that -we get fifteen feet, and then

divide this length into twelve equal parts, each of which

will be fifteen inches.

Now if instead of inventing a new name for this

compound operation we choose to call it by the old name

of multiplication, we shall be able to speak of multiply-

ing a foot so as to get fifteen inches. The operation of

multiplying by fifteen and dividing by twelve is written

thus : If ; and so, to change a foot into fifteen inches,

we multiply by the fraction ^^. Of this fraction the

upper number (15) is termed the mtmerator, the lower

(12) the denominator.

Now it was explained in the first chapter, that

the formulse of arithmetic and algebra are capable of a

double interpretation. For instance, such a symbol

as 3 meant, in the first place, a number of letters or

men, or any other things ; but afterwards was regarded

as meaning an operation, namely, that of trebling any-

thing. And so now the symbol |f may be taken either

as meaning ' so much ' of a foot, or as meaning the

operation by which a foot is ciianged into fifteen inches.

The degree in which one quantity is greater or less

than another ; or, to put it more precisely, that amount

of stretching or squeezing which must be applied to the

latter in order to produce the former, is called the ratio

of the two quantities. If a and h are any two lengths.
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the ratio of a to 6 is tlie operation of stretching or

squeezing which will make h into a; and this operation

can be always approximately, and sometimes exactly,

represented by means of numbers.

§ 4. The Arithmetical Expression of Ratios.

For the approximate expression of ratios there

are two methods in use. In each, as in measuring

quantities in general, we proceed by using standards

which are taken smaller and smaller as we go on. In

the first, these standards are chosen according to a fixed

law ; in the second, our choice is suggested by the par-

ticular ratio which we are engaged in measuring.

The first method consists in using a series of stan-

dards each of which is a tenth part of the preceding.

Thus to express the ratio of fifteen inches to a foot, we

proceed thus. The fifteen inches contain a foot once,

and there is a piece of length three inches, or a quar-

ter of a foot, left over. This quarter of a foot is then

measured in tenths of a foot, and we find that it is

2-tenths, with a piece—which proves to be half a tenth

—over. So, if we chose to neglect this half-tenth we
should call the ratio 12-tenths, or as we write it

1-2. But if we do not neglect the half-tenth, it has to

be measured in hundredths of a foot ; of which it makes

5 exactly. So that the result is 125 hundredths, or

1"25, accurately.

Again we will try to express in this way the length

of the diagonal of a square in terms of a side. We find

at once that the diagonal contains the side once, with a

piece over : so that the ratio in question is 1 together

with some fraction. If we now measure this remaining
piece in tenth parts of a side we shall find that it contains
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4 of tliem, -witli something left. Tims the ratio of the

diagonal to the side may be approximately expressed by

14-tenths, or 1-4. Ifwe now measure the piece left oyer

in hundredth parts of the side we shall find that it con-

tains one and a bit. Thus 141-hundredths, or 1'41 is a

more accurate description ofthe ratio. And this bit can

be shown to contain 4-thousandths of the side, and a

bit oyer; so that we arrive at a still more accurate

value, 1414-thousandths, or 1-414. And this process

might be carried on to any degree of accuracy that was

required; but in the present case, unlike that con-

sidered before, it would never end ; for the ratio of the

diagonal of a square to its side is one which cannot be

accurately expressed by means of numbers.

The other method of approximation differs from the

one just explained in this respect—that the successively

smaller and smaller standard quantities in terms of

which we measure the successive remainders are not

fixed quantities, an inch, a tenth of an inch, a

hundredth of an inch, and so on; but are suggested

to us in the course of the approximation itself.

We begin, as we did before, by finding how many
times the lesser quantity is contained in the greater,

say, the side of a square in its diagonal. The answer

in this case is, once and a piece over. Let the piece

left over be called a. We then go on to try how many
times this remainder, a, is contained in the side of the

square. It is contained twice, and there is a remainder,

say 6. We then find how many times 6 is contained in

a. Again twice, with a piece over, say c. And this

process is repeated as often as we please, or until no

remainder is left. It will, in the present case, be found

that each remainder is contained twice, with something

over, in the previous remainder.

6
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Let US now inquire how this process enables us to

find successive approximations to the ratio 6f the

diagonal to the side of the square.

Suppose, first, that the piece a had been exactly half

the length of the side ; that is, that we may neglect the

remainder I. Then the diagonal would be equal to the

side together with half the side, that is, to three-halves

of the side.

Next let us include h in our approximation, but

neglect c 5 that is, let us suppose that h is exactly one

half of a. Then the side contains a twice, and half of

a ; that is to say, contains five-halves of a ; or a is two-

fifths of the side. But the diagonal contains the side

together with a, that is, contains the side and two-fifths

of the side, or seven-fifths of the side. The piece

neglected is here less than h, and h is one-fifth of the

side of the square.

Again, let us include c in our approximation, and

suppose it to be exactly one half of h. Then a, which

contains h twice with c over, will be five-halves of 6,

that is h will be two-fifths of a, Hence the side will

contain twice a and two-fifths of a, that is, twelve-fifths

of a ; so that a is five-twelfths of the side. And the

diagonal is equal to the side together with a ; that is,

to seventeen-twelfths of the side. Also this approxi-

mation is closer than the preceding, for the piece

neglected is now less than c, which is one-half of 6,

which is two-fifths of a, which is five-twelfths of the

side ; so that it is less than one-twelfth of the side.

By continuing this process we may find an approxi-

mation of any required degree of accuracy.

The first method of approximation is called the
method oi decimals; the second, that of contvmied frac-
tions.
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§ 5. The Fourth Proportional.

One of the chief diflferences between quantities and

numbers is that, while the division of one number by

another is only possible when the first number happens

to be a multiple of the other, in the case of quantities

it appears, and we are indeed accustomed to assume,

that any quantity may be divided by any number we
like ; that is to say, any length—quantities of all kinds

being represented by lengths—may be divided into any

given number of equal parts. And, if division is always

possible, that compound operation made up of multi-

plication and division which we have called ' multiply-

ing by a fraction' must also be always possible; for

example, we can find five-twelfths not only of a foot

but of any other length that we like.

The question now naturally arises whether that

general operation of stretching or squeezing which we
have called a ratio can be applied to all quantities alike.

If we have three lengths, a, i, e, there is a certain

operation of stretching or squeezing which will convert

a into 6. Can the same operation be performed upon e

with the result of producing a fourth quantity d, such

that the ratio of c to ^ shall be the same as the ratio of

a to 6 ? We assume that this quantity— the fourth

proportional, as it is called—does always exist; and
this assumption, as it really lies at the base of all

subsequent mathematics, is of so great importance as

to- deserve further study.

We shall find that it is really included in the second

of the two assumptions that we made in the chapter

about space ; namely, that figures of the same shape

may be constructed of different sizes. We found, in
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considering this point, that it was sufficient to take the

case of triangles of diflferent sizes of which the angles

were equal; and showed that one triangle might be

made into another of the same shape by the equal

magnifying of all its three sides ; that is to say, when

two triangles have the same angles, the three ratios of

either side of one to the corresponding side of the other

are equal. If this is true, it is clear that the problem of

finding the fourth proportionalisreduced to that ofdi'aw-

ing two triangles ofthe same shape. Thus, for example,

let A B and A o represent the first two given quantities,

and A D the third (fig. 31) ; and let it be required to

find that quantity which is got from a d by the same

operation of stretching as is required to turn A B into

A c. Suppose that we join b d, and draw the line c E

making the angle ace equal to the angle A b d. The two

triangles ABD and ace are now of the same shape, and

consequently ace can be got from abd by the equal

stretching of all its sides ; that is to say, the stretching

which makes A B into A is the same as the stretching

which makes a d into ae. a e is therefore the fourth pro-

portional required.

To render these matters clearer, it is well that we
should get a more exact notion of what we mean by the

fourth proportional. We have so far only described it

as something which is got from A D by the same process

which makes A B into A c. In what way are we to tell

whether the process is the same? We might, if we



QUANTITY. 107

liked, give a geometrical definition of it, founded npon

the construction just explained ; and say that the ratio

of A D to A E shall be called ' equal ' to the ratio of A b to

A c, when triangles of the same shape can have for their

respective sides the lengths a B, A D, a c, and A E. But it

is better, if we can do it, to keep the science of quantity-

distinct from the science of space, and to find some

definition of the fourth proportional which depends

upon quantity alone. Such a definition has been found,

and it is very important to notice the nature of it. For

we shall find that similar definitions have to be given of

other quantities whose existence is assumed by what is

called the princijple of continuity. This principle is

simply the assumption, which we have stated already,

that all quantities can be divided into any given number

of equal parts.

If we apply two different operations of stretching

to the same quantity, that which produces the greater

result is naturally looked upon as an operation which
under like circumstances will always produce a greater

effect. Now we will make our definition of the fourth

proportional depend upon the very natural assuniption

that, if two processes of stretching are applied to two
different quantities, that process which produces thft

greater, result in the one case wiU also produce the
greater result in the other.

Suppose now that we have tried to approximate to
the ratio which ao bears to ab, and that we have
found that ac is between sfeventeen-twelfths and
eighteen-twelfths of ab, then we have two processes
of stretching which can be applied to A B, the process

denoted by J-i (that is, multiplying by 17 and dividing
by 12), and the process which makes A o of it. The
result of the former process is, by hypothesis, less than
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the result of tlie latter, because A is more than seven-

teen-twelfths of AB. Let us now apply these two

processes to ad. The former -will produce seventeen-

twelfths of a d, the latter will produce the fourth pro-

portional required. Consequently this fourth propor-

tional must be greater than seventeen-twelfths of A d.

But we know further that A c is less than eighteen-

twelfths of A B, Then the operation which makes A b

into A c gives a less result than the operation of multi-

plying by 18 and dividing by 12. Let us now perform

both upon A D. It will follow that the fourth propor-

tional required is less than eighteen-twelfths of A D,

The same thing will be true of any fractions we like to

take, and we may state our result in this general

form :

—

According as a c is greater or is less than any speci-

fied fraction of A b, so will the foxirth proportional (if it

exists) be greater or be less than the same fraction ofA D.

But we shall now show that this property is of

itself sufficient to define, without ambiguity, the fourth

proportional; that is to say, we. shall show that there

cannot be two different lengths satisfying this condition

at the same time.

If possible, let there be two lengths, a e and a e', each
of them a fourth proportional to a b, a c, a d (fio-. 32).

Then by taking a sufficient number of lengths each
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equal to e %', the sum of them can be made greater

than AD. Suppose for example that 600 of them

just fell short of the length a d, and that 501 exceeded

it; then, if we divide AD into 601 equal parts, each of

these parts will be less than e e'. Secondly, if we go

on marking off lengths from D towards B, each equal

to one of these small parts of ad, one of the points of

division must fall between B and e'; since ee' is

greater than the distance between two of them. Let

this point of division be at f. Then ap is got from

A D by multiplying by some number or other and then

dividing by 501. If we apply this same process to A b

we shall arrive at a length A G, which must be either

greater or less than AO. If it is less than A c, then the

operation by which the length A b is made into A G is a

less amount of stretching than the operation by which

A B is made into A c. Consequently the operation

which turns A d into A r is a less amount of stretching

than that which gets A E, and also less than that which

gets A e' from a d. Therefore A p must be less than a b,

and also less than A e'. But this is impossible, because

p lies between e and e'. And the argument would be

similar if we had supposed A G greater than A c.

Thus we have proved that there is only one length

that satisfies the condition that the process of making
A D into it is greater than all the fractions which are

less than the process of making ab into AO, and less

than all the fractions which are greater than this same
process.

Let us note more carefully the nature of this defi-

nition.

First of all we say that if any fraction whatever be

taken, and if it be greater than the ratio of A to A b, it

will also be greater than the ratio of A E to A D, and if
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it be less tlian the one it will also be less than the

otbpr.

This is a matter which can be tested in regard to

any particular fraction. If a length a e were given to

ns as the fourth proportional we could find out whether

it obeyed the rule in respect of any one given fraction.

But if there is a fourth proportional it must satisfy

this rule in regard to all fractions whatever. We can-

not directly test this ; but we may be able to give a

proof that the quantity which is supposed to be a fourth

proportional obeyS the rule for one particular fraction,

which proof shall be applicable without change to any

other fraction. It will then be proved, for this case,

not only that a fourth proportional exists, but that this

particular quantity is the fourth proportional. This

is, in fact, just what we can do with the sides of similar

triangles. If the length a b (fig. 33) is divided into any
number of equal parts, and lines are drawn through the
points of division, making with a b the same angle that
B D makes with it, they will divide a d into the same
number of equal parts.

If now we set oflf poipts of division at the same
distance from one another from b towards o and
through them draw lines making the same angle
with the line A c that b d does, these lines will also
cut off equal distances from d towards e. If any one
of these lines starts from a o on the side of o towards
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A, it Will meet a e on the side of e towards A ; because

the triangle which it forms with the lines a c and A e

must have the same shape as a o E. So also any one of

these lines which starts from A c on the side of c away

from A will meet A E on the side of E away from A.

Looking then at the Tarious fractions of A b which

are now marked off, it is clear that, if one of them

is less than a c, the corresponding fraction of A d is less

than A E ; and if greater, greater. It follows, therefore,

that the line ae which is given by this construction

satisfies, in the case of any fraction we choose, the con-

dition which is necessary for the fourth proportional.

Consequently, if the second assumption which we made
about space be true, there always is a fourth propor-

tional, and this process will enable us to find it.

There is, however, still one objection to be made
against our definition of the fourth proportional, or

rather one point in which we can make it a firmer

ground-work for the study of ratios. For it assumes
that quantities are continuous ; that is, that any quan-
tity can be divided into any number of equal parts,

this being implied in the process of taking any numer-
ical fraction of a quantity.

We say, for example, that if a, h, c, d, are propor-

tionals, and if a is greater than three-fifths of b, c will

be greater than three-fifths of d. Now the process of

finding three-fifths of 6 is one or other of the following

two processes. Either we divide h into five equal parts

and take three of them, or we multiply b by three and
divide the result into five equal parts. (We know of

course that these two processes give us the same result.)

But it is assumed in both cases that we can divide a
given quantity into five equal parts.

Now in a definition it is desirable to assume as
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little as possible ; and accordingly the Greek geometers

in defining proportion, or (which is- really the same

thing) in defining the fourth proportional of three

given quantities, have tried to avoid this assumption,

Nor is it difficult to do this. For let us consider

the same example. We say that if a is greater than

three-fifths of h, c will be greater than the same fraction

of d. Now let us multiply both the quantities a and b

by five. Then for a to be greater than three-fifths of 6,

the quantity which a has now become must be greater

than three-fifths of the quantity which h has become

;

that is, if the new h be divided into five equal parts the

new a must be greater than three of them. But each of

these five equal parts is the same as the original 6; and

so our statement as to the relative greatness of a and b

is the same as this, that five times a is greater than

three times b ; and similarly for c and d.

Now every fraction involves two numbers. It is a

compound process made up of multiplying by one

number and dividing by another, and it is clear there-

fore that we may, not only in this particular case of

three-fifths but in general, transform our rule for the

fourth proportional into this new form. According as

m times a is greater or less than n times 6, so is m times

c greater or less than n times d, where m and n are any

whole numbers whatever.

This last form is the one in which the rule is given

by the Greek geometers ; and it is clear that it does

not depend on the continuity of the quantities con-

sidered, for whether it be true or not that we can

divide a number into any given number of equal parts,

we can certainly take any multiple of it that we
like.

These fundamental ideas, of ratio, of the equality of
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ratios, and of the nature of the fourth proportional

are now established generally, and with reference to

quantities of any kind, not with regard to lengths alone

;

provided merely that it is always possible to take any
given multiple of any given quantity.

§ 6. 0/" Areas ; Stretch and Squeeze.

We shall now proceed to apply these ideas to areas,

or quantities of surface, and in particular to plane areas.

The simplest of these for the purposes of measurement

is a rectangle. The finding of the area of a rectangle

is in many cases the same process as numerical multi-

pHcation. Tor example, a rectangle which is 7 inches

long and 5 inches broad will contain 35 square inches,

and this follows from our fundamental ideas about

the multiplication of numbers. But this process, the

multiplication of numbers, is only applicable to the

case in which we know how many times each side of

the rectangle contains the unit of length, and it then

tells us how many times the area of the rectangle con-

tains the square described upon the unit of length. It

remains to find a method which can always be used.

For this purpose we first of all observe that when
one side of a rectangle is lengthened or shortened in

any ratio, the other side being kept of a fixed length,

the area of the rectangle wiU be increased or diminished

in exactly the same ratio.

In order then to make any rectangle p E Q out of a

square o A b, we have first of all to stretch the side o a

until it becomes eqnal to o p, and thereby to stretch the

whole square into the rectangle o d, which increases its

area in the ratio of o A to o p. Then we must stretch

the side o b of this figure until it is equal to o Q, and
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thereby the figure d becomes o R, and its area is in-

creased in the ratio of OB to o Q. Or we may, if we

'-n

FlQ. 34.

like, first stretch o b to the length o Q, -whereby the

square o becomes o e, and then stretch o A to P, by

which o E becomes E.

Thus the whole operation of turning the square o

into the rectangle o b is made up of two stretches ; or,

as we have agreed to call them, ' multiplications
' ; viz.

the square has to be multiplied by the ratio of o P to

o A, and by the ratio of o Q to o b ; and we may find

from the result that the order of these two processes

is immaterial.

For let us represent the ratio of o p to o a by the

letter a, and the ratio of Q to o b by 6. Then the

ratio of the rectangle o d to the square o c is also a ; in

other words, a times o c is equal to o D. And the ratio

of o K to o D is 6, so that 6 times o d is equal to o k ;

that is, h times a times is equal to k, or, as we

write it, h a times c is E.'

And in the same way h times is equal to OE
and a times h times o c is a times o e, which is o e.

• It is a matter of convention which has grown up in consequence of our

ordinary habit of reading from left to right, that we always read the

symbols of a multiplication, or of any other operation, from right to left.

Thus a b times any quantity x, means a times b times x ; that is to say, we

first multiply x by 6, and than by a ; that operation being first performed

whose symbol comes last.
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Consequently we liave i a times o o giving the same
result as a 6 times o c 3 or, as we write it

ha ss ah,

wliicli means that the effect of multiplying first by the

ratio a and then by the ratio b is the same as that of

multiplying first by the ratio h and then by the

ratio a.

This proposition, that in multiplying by ratios we
may take them in any order we please without affecting

the result, can be put into another form.

Suppose that we have four quantities, a, h, c, d,

then I can make a into d by two processes performed

in succession ; namely, by first multiplying by the ratio

of 6 to a, which turns it into h, and then by the ratio

of d to h. But I might have produced the same effect

on a by first multiplying it by the ratio of c to a, which

turns it into c, and then multiplying by the ratio of d to

c. We are accustomed to write the ratio of 6 to a in

shorthand in any of the four following ways :

—

h : a, -, 6 -T- a, •>/„,

and so the fact we have just stated may be written

thus :

—

Now let us assume that the four quantities, a, h,

c, d, are proportionals ; that is, that the ratios '/„ and

*/„ are equal to one another. It follows then that the

ratios "/„ and "/^ are equal to one another.

This proposition may be otherwise stated in this

form ; that if a, h, c, d are proportionals, then a,M, h, d

will also be proportionals : provided always that this

latter statement has any meaning, for it is quite possible

that it should have no meaning at all. Suppose, for in-

stance, that a and b are two lengths, c and d two intervals
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of time, then we understand what is meant by the ratio

of 6 to a, and the ratio of d to c, and these ratios may

very well be equal to one another ; but there is no such

thing as a ratio of c to a, or of <i to b, because the

quantities compared are not of the same kind. When,

however, four quantities of the same Mnd are propor-

tionals, they are also proportionals when taken alter-

nately ; that is to say, when the two middle ones are

interchanged.

§ 7. 0/" Fractions^

We have seen in § 3, page 101, that a ratio may be

expressed in the form of a fraction. Thus, let a be

represented by the fraction^ and h by the fraction -,

where p, q, r, s are numbers. Then the result on page

115 may be written

—

p r _ r p

q s s q

Let us examine a little more closely into the mean-

ing of either side of this equation. Suppose we were

R F

Fig. 35.

to take a rectangle o q t s, of which one side, o Q, con-

tained q units of length, and another, oe, s units.

Then this rectangle could be obtained from the unit

square by operating upon it with the two stretches q
and s. Its area would thus contain q s square units.
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Now let us apply to this rectangle in succession the

two stretches denoted by t and -. If we stretch the
9.

«

rectangle in the direction of the side o Q in the ratio of

^, we divide the side o q into g equal parts, and then
1

take p equal p times one of those parts. But each of

these parts will be equal to unity, hence p contains

2> units. We thus convert our rectangle o t into one

p', of which one side, o p, contains p and the other,

s, s units. Now let us apply to this rectangle the

stretch -parallel to the side o s (as the figure is drawn
s

^. denotes a sqiieeze). We must divide o s into s equal
s

parts and take r such parts, or -we must measure a

length E along o s equal to r units. Thus this second

stretch converts the rectangle op' into a rectangle

ok', of which the side op contains p and the side

OE contains r units of length, or into a rectangle

containing f r square units. Hence the two stretches

•?- and - applied in succession to the rectangle o T con-

g s

vert it into the rectangle oe'. Now this may be

written symbolically thus :

—

•^ X - . rectangle o T = rectangle E

= p r unit-rectangles.

Now unit-rectangle may obviously be obtained from

the rectangle o T by squeezing it first in the ratio - in

the direction of o Q, ajid then in the ratio - in the di-

rection o e. Now this is simply saying that o t contains
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g s unit-rectangles. Hence tlie operationEx- applied

to unit-rectangle must produce — of the result, of its

application to the rectangle o t. That is :

—

P X ~ . unit-rectangle = — .jpr unit-rectangle,

or, in our notation, = ^— . unit-rectangle.

Hence we may say that ^ x —operating upon unity
q s

is equal to the operation denoted by ?~, or to multi-

plying unity hj pr and then dividing the result by q s.

This equivalence is termed the multiplication of frac-

tions.

A special case of the multiplication of fractions

arises when s equals r. We then have

—

q r qr

But the operation - denotes that we are to divide unity

into r equal parts, and then take r of them ; in other

words, we perform a mdl operation on unity. The
symbol of operation may therefore be omitted, and we
read

—

p _pr
q~q?'

This result is then expressed in words as follows

:

Given a fraction, we do not alter its value by multiply-

ing the numerator and denominator by equal quanti-

ties.

From this last result we can easily interpret the

operation
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For, by the preceding paragraph

—
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p ^ r

Hence

—

z=^, and r = «r.

V , r ps , qr
i- 4- _ ^ -^^ + -5^ •

9 s qs qa

Or, to apply first the operation ^ to unity and then to

add to this the result of the operation - is the same
s

thing as dividing unity into qs parts, taking ps ot

those parts, and then adding to them q r more of the

like parts. But this is the same thing as to take at

once ps + qr oi those parts. Thus we may write

—

p ,
r _ ps + qr

q s 2® '

This result is termed the addition of fractions. The
reader will find no difficulty in interpreting addition

graphically by a succession of stretches and squeezes of

the unit-rectangle.

We term division the operation by which we reverse

the result of multiplication. Hence when we ask the
^

meaning of dividing by the fraction £ we put the

question : What is the operation which, following oni

the operation ^, just reverses its effect ? ^

2

Now, 1x1=^1 x''-=PI.
s q q s 2 *

Suppose we take r = q, s = p.
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Then £x^=£i;

or, to multiply unity by ^, and then by -2, is to perform

the operation of dividing unity into qp parts and

then taking p q oi them, or to leave unity unaltered.

Hence the stretch 2. completely reverses the stretch ^
;

P .2
it is, in fact, a squeeze -which just counteracts the

preceding stretch. Thus multiplying by 2 must be an

operation equivalent to dividing by i-. Or, to divide

by ^ is the same thing as to multiply by ^. This result

is termed the division offractions.

§ 8. Of Areas ; Shear.

Hitherto we have been concerned with stretching

or squeezing the sides of a rectangle. These opera^

tions alter its area, but leave it still of rectangular

shape. We shall now describe an operation which

changes its angles, but leaves its area unaltered.

F
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therefore to o d), somewhere in the same line as c d.

Then, since d is equal to e p, the points e and f are

equally distant from o and d respectively, and it follows

that the triangles b o e and A d p are equal. Hence if

Jhe triangle bob were cut off the parallelogram along

B c and placed in the position a d p, we should have

converted the parallelogram into the rectangle without

changing its area. Thus the area of the parallelogram

is equal to that of the rectangle. Now the area of the

rectangle is the product of the numerical quantity which

represents the length of A d into that quantity which

represents the length of a e. a b is termed the base

of the parallelogram, and A D, the perpendicular dis-

tance between its base and the opposite side E p, is

termed its height. The area of the parallelogram is

then briefly said to be ' the product of its base into

its height.'

Suppose c D and a b were rigid rods capable of slid-

ing along the parallel lines c d and a b. Let us imagine

them connected by a rectangular elastic membrane,

A b D ; then as the rods were moved along a h and c d

the membrane would change its shape. It would, how-

ever, always remain a parallelogram with a constant

base and height ; hence its area would be unchanged.

Let the rod a b be held fixed in position, and the rod

c D pushed along c ^ to the position e p. Then any line,

G H, in the membrane parallel and equal to a b will be

moved parallel to itself into the position i j, and will

not change its length. The distance through which

c has moved is c E, and the distance through which ct

has moved is G i. Since the triangles c b e and G b i

have their sides parallel they are similar, and we have

the ratio of c e to G i the same as that of b c to b g ;

or, when the rectangle a b c d is converted into the
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parallelogram a b e p, any line parallel to A B remains

nnehanged in length, and is moved parallel to itself

through a distance proportional to its distance from a b.

Such a transformation of figure is termed a shear, and

we may consider either our rectangle as being sheared

into the parallelogram or the latter as being sheared

into the former. Thus the area of a parallelogram is

equal to that of a rectangle into which it may be

sheared.

The same process which converts the parallelogram

a B E F into the rectangle a b o d will convert the tri-

angle ABE, the half of the former, into the triangle

FiQ. 37.

ABC, the half of the latter. Hence we may shear any

triangle into a right-angled triangle, and this will not

alter its area. Thus the area of any triangle is half

the area of the rectangle on the same base, and with

height equal to the perpendicular upon the base from

the opposite angle. This height is also termed the

altitude, or height of the triangle, and we then briefly

say ^ The area of a triangle is half the product of its hase

into its altitude.

A succession of sjiears will enable us to reduce any
figure bounded by straight lines to a triangle of equal

area, and thus to determine the area the figure encloses

by finally shearing this triangle into a right-angled
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triangle. For example, let a b o d e be a portion of the

boundary of the figure. Suppose a o joined ; then

shear the triangle abc so that its yertex b falls at b'

on D produced. The area a b' o is equal to the area

ABC. Hence we may take a b' d e for the boundary of

our figure instead of A B c D B ; that is, we have reduced

the number of sides in our figure by one. By a suc-

cession of shears, therefore, we can reduce any figure

bounded by straight lines to a triangle, and so find its

area.

§ 9. (y Circles and their Areas.

One of the first areas bounded by a curved line which

suggests itself is that of a sector of a circle, or the

FiQ. 38.

portion of a circle intercepted by two radii and the

arc of the circumference between their extremities.

Before we can consider the area of this sector it will

be necessary to deduce some of the chief properties of

the complete circle. Let us take a circle of unit

radius and suppose straight lines drawn at the extre-

mities oftwo diameters ab and o d at right angles ; then

the circle will appear as if drawn inside a square (see

fig. 39). The sides of this square will be each 2 and

its area 4.

Now suppose the figure composed of circle and

square first to receive a stretch such that every line
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parallel to the diameter a B is extended in the ratio of

a : 1, and then another stretch such that every line

parallel to c d is again extended in the ratio of a.: 1.

Then it is obvious that we shall have stretched the

square of the first figure into a second square whose

sides will now he equal to 2 a.

i.

M

yj
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n' p' a m'

Thus it follows that the third side o P must he to

the third side o' p' in the ratio of 1 to a ; or, since o P

is of unit length, o' p' must be equal to the constant

quantity a. Further, since the angles PON, p' o' n'

are equal, o' p' is parallel to P. Hence the circle of

unit radius has been stretched into a circle of radius a.

In fact, the two equal stretches in directions at right

angles, which we have given to the first figure, have

performed just the same operation upon it, as if we

had placed it under a magnifying glass which enlarged

it uniformly, and to such a degree that every line in it

was magnified in the ratio of a to 1.

It follows from this that the circumference of the

second circle must be to that of the first as a is to 1.

Or, the circumferences of circles are as their radii.

Again, if the arc p q is stretched into the arc p' q'—;that

is, if o' p', o' q' are respectively parallel to o p, o Q—then

the arc p' q' is to the arc p Q in the ratio of the radii of

the two circles. Since the arcs p Q, p' q' are equal to

any other arcs which subtend the same angles at the

centres of their respective circles, we state generally

that the arcs of two circles which subtend equal angles at

their respective centres are in the ratio of the corre-

sponding radii.

Since the second figure is an uniformly magnified

image of the first, every element of area in the first has

been magnified at the same uniform rate in the second.

Now the square in the first figure contains four units

of area, and in the second figure it contains 4 a^ units

of area. Hence every element of area in the first

figure has been magnified in the second in the ratio of

a" to 1. Thus the area of the circle in the first figure
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must be to the area of the circle in the second figure

as 1 is to a^. Or : The areas of circles are as the squares

of their radii.

It is usual to represent the area of a circle of unit

radius by the quantity tt ; thus the area of a circle of

radius a will be represented by the quantity tt a\

If, after stretching A b to a' b' in the ratio of a to 1,

we had stretched or squeezed o d to o' d' in the ratio of

i to 1, where b is some quantity different from a, our

square would have become a rectangle, with sides equal

to 2 a and 2 b respectively. It may be shown that we

Fig. 40.

should have distorted our circle into the shape of that

shadow of a circle which we have termed an ellipse.

Furthermore, elements of area have now been stretched

in the ratio of the product of a and 6 to 1 ; or, the area

of the ellipse is to the area of the circle of unit radius

as a 6 is to 1 : whence it follows that the area of the

ellipse is represented by tt a b, where a and b are its

greatest and least radii respectively.

We shall now endeavour to connect the area of a
circle of unit radius, which we have written tt, with the

number of linear units in its circumference. Let us
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take a number of points uniformly distributed round

the circumference of a circle, a b o d B F. Join them in

succession to each other and to o, the centre ofthe circle,

and draw the lines perpendicular to these radii (or the

tangents) at A B D E p ; then we shall hare constructed

two perfectly symmetrical figures, one of which is said

to be inscribed, the other circumscribed to the circle.

Now the areas of these two figures differ by the sum of

such triangles as A a b, and the area of the circle is

obviously greater than the area of the inscribed and

less than the area of the circumscribed figure. Thus

the area of the circle must differ from that of the in-

scribed figure by something less than the sum of all the

little triangles a a b, b /8 c, &c. Now from symmetry all

these little triangles are equal, and their areas are

therefore equal to one half the product of their heights,

or a n, into their bases, or such quantities as a b. Hence
the sum of their areas is equal to one half of the product

oi an into the sum of the sides of the inscribed figure.

Now the sum of the sides of the inscribed figure is

never greater than the circumference of the circle. If

we tate, therefore, a great number of points uniformly

distributed round the circumference of "our circle, a and

7
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B may be brouglit as close as we please, and the nearer

we bring a to b, the smaller becomes a n. Hence, by

taking a sufficient number of points, we can make the

sum of the triangles a a b, b /S c, &c. as small as we
please, or the areas of the inscribed and circumscribed

figures, together with the area of the circle which Kes

between them, can be made to differ by less than any

assignable quantity. In the limit then we may say

that by taking an indefinite number of points we can

make these areas equal. Now the area of the inscribed

figure is the sum of the areas of all such triangles as

A B, and the area of the triangle A o b is equal to

half the product of its height o n into its base A b ; or

if we write for the ' perimeter,' or sum of all the sides

A B, BO, &c. the quantity p, the area of the inscribed

figure will equal \ p x on. Again if f' be the sum
of the sides 0/3,^87, &c. of the circumscribed figure,

its area = \ p' x o b.

Since the triangles a b, o b w are of the same shape,

being right-angled and again equi-angled at 0, we have

the ratio of b w to a b, or of their doubles A b to a j3, the

same as that of w to o b. But p is obviously to p' in

the same ratio as a b to a ;S ; hence p is to j?' as w to

o B. By taking a sufficient number of points we can

make o w as nearly equal to b as we please ; thus we
can make p as nearly equal to p', and therefore either

of them as nearly equal to the. circumference of the

circle (which lies between them),* as we please. Hence
in the limit p will equal the circumference of the circle,

and n its radius, and we may state that the area^ of the

inscribed and circumscribed figures, which approach

nearer and nearer to the area of the circle as we in-

crease the number of their sides, become ultimately

• In the case of the circle the reader will recognise this intuitively.
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equal to eacli other and to half the product of the cir-

cumference of the circle into its radius. This must there-

fore be the area of the circle. Hence we have the fol-

lowing equality :—The area of a circle of radius a equals

one half its circumference x a. But it equals also Tra'

;

whence it follows that the circumference of a circle

equals tt . 2 a. We may express this result in two
different ways :

—

(i) The ratio of the circumference of a circle to its

diameter (2 a) is a constant quantity tt.

(ii) The number of linear units (2 7r) in the cir-

cumference of a circle of unit-radius is twice the

number of units of area (tt) contained by that circum-

ference.

The value of tt, the ratio of the circumference of a

circle to its diameter, is found to be a quantity which,

like the ratio of the diagonal of a square to its side (see

p. 103), cannot be expressed accurately by numbers
;

its approximate value is 3*14159.

We have now no difficulty in finding the area of

the sector of a circle, for if we double the arc of a

sector we obviously double its area ; if we treble it, we
treble its area ; shortly, if we take any multiple of it,

we take the same multiple of its area. Hence it

follows by § 6, that two sectors are to each other

in the ratio of their arcs, or a sector must be to the

whole circle in the ratio of its arc to the whole circum-

ference.

If we represent by s the area of a sector of a circle

of which the arc contains s units of length and the

radius a units, we may write this relation^ symboli-

cally

—

s _ s

irw^ 2 TT a
*
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Thus we deduce s = i s x a ; or,

The area of a sector is half the product of the length of its

are into its radius.

§ 10. Of the Area of Sectors of Curves.

The knowledge of the area of a sector of a circle

enables us to find as accurately as we please the area

of a sector whose arc is any curve whatever. Let the
" arc p Q be divided into a number of smaller arcs p a, A b,

BC, CD, DQ. We shall suppose that pa subtends the

greatest angle at o of all these arcs. Further we shall

consider only the case where the line op diminishes

continuously if p be made to pass along the arc from p

to Q. If this be not the case, the sector qop can
always be split up into smaller sectors, of which it shall

be true that a line drawn from the point o to the arc con-

tinuously diminishes from one side of the sector to the

other, and then for the area of each of these sectors the

following investigation will hold. With o as centre de-

scribe a circle ofradius p to meet oa produced in p'; with
the same centre and radius OA describe a circle to meet
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OB in a' and OP in a; similarly circles with radius ob to

meet oa in 6 and oo in b', with radius oc to meet ob in

c and D in o', with radius o d to meet o c in c? and o Q in

d', and finally with radius OQ to meet od in e, OA in/,

and OP in q'. Then the area of the sector obviously lies

between the areas of the figure bounded by op, od' and

the broken line pp'aa'bb'oo'dd', and of the figure

bounded by oa, oq and the broken line axbBccdDeQ,.

Hence it differs from either of them by less than their

difference or by less than the sum of the areas p'a, a'&,

b'c, o'd, D'e. Now since the angle at pop' is greater

than any of the other sectorial angles at o, the sum of

all these areas must be less than that ofthe figure p p'/q',

and the area of this figure can be made as small as we
please by making the angle a o p sufficiently small. This

can be achieved by taking a sufficient number of points

like A,B,c,D, &c. We are thus able to find a series of

circular sectors, the sum of whose areas differs by as

small a quantity as we please from the area of the

sector POQ; in other words, we reduce the problem of

finding the area of any figure bounded by a curved line

to the problem already solved of finding the area of a
sector of a circle. The difficulties which then arise

are purely those of adding together a very great

number of quantities ; for, it may be necessary to take a

very great number of points such as abcd . . . in

order to approach with sufficient accuracy to the mag-
nitude of the area poq.

§ 11. Extension of the Conception of Area.

Let ABCD be a closed curve or loop, and o a point

inside it. Then if a point p move round the perimeter

of the loop, the line op is said to trace out the area of
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the loop ABCD. By this is meant that successive posi-

tions of the line op, pair and pair, form together with

the intervening elements of arc elementary sectors, the

sum of the areas of which can, by taking the successive

Pig. 43.

positions sufiiciently close, be made to differ as little as

we please from the area bounded by the loop.

Now suppose the point o to be taken outside the

loop ABCD, and let us endeavour to find the area then

Fig. 44.

traced out by the line op joining o to a point p which
moves round the loop. Let OB and od be the extreme
positions of the line OP to the left and to the right as

p moves round the loop abod; then as p moves along
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the portion of the loop dab, op moves counter-clock-

wise from right to left and traces out the area boimded

by the arc dab and the lines od and ob. Further, as

p moves along the portion of the loop bod, op moves

clockwise from left to right and traces out the area

doubly shaded in our figure, or the area bounded by

the arc bod and the lines ob and od. It is the differ-

ence of these two areas which is the area of the loop

ABCD. If, then, we were to consider the latter area

OBCDO as negative, the line op would still trace out the

area of the loop abcd as p moves round its perimeter.

Now the characteristic difference in the method of de-

scribing the areas odabo and obcdo is, that in the

former case o p moves eounter-clochwise round o, in the

latter case it moves clockwise. Hence if we make a con-

vention that areas traced out by op when it is moving

counter-clockwise shall be considered positive, but areas

traced out by o p when it is moving clockwise shall be

considered negative, then wherever o may be inside or

outside the loop, the line o p will trace out its area pro-

vided p move completely round its circumference.

But it must here be noted that p may describe the

loop in two different methods, either going round it

counter-clockwise in the order of points abcd, or

clockwise in the order of points A D c b. In the former

case, according to our convention, the greater area

D A B o is positive, in the latter it is negative. Hence
we arrive at the conception that an area may have a

sign ; it will be considered positive or negative accord-

ing as its perimeter is supposed traced out by a point

moving counter-clockwise or clockwise. This extended

conception of area, as having not only magnitude but

sense, is of fundamental importance, not only in many
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branches of the exact sciences, but also for its many

practical applications.'

Let a perpendicular o N be erected at o (which is,

as we have seen, any point in the plane of the loop)

to the plane of the loop, and let the length o n be

taken along it containing as many units of length as

there are units of area in the loop A b c d. Then o n

will represent the area of the loop in magnitude; it

will also represent it in sense, if we agree that o it shall

always be measured in such a direction from o, that to

a person standing with his feet at o and head at N the

point p shall always appear to move counter-clockwise.

Thus, for a positive area, N will be above the plane

;

for a negative area, in the opposite direction or below*

the plane. We are now able to represent any number
of areas by segments of straight lines or steps per-

pendicular to their planes. The sum of any number of

areas lying in the same plane will then be obtained by
adding algebraically all the lines which represent these

areas.

When the areas do not all lie in one plane the

representative lines will not all be parallel. In this

case there are two methods of adding areas. We may
want to know the total amount of area, as, for example,

when we wish to find the cost of painting or gilding

a many-sided solid. In this case we add all the repre-

sentative lines without regard to their direction.

In many other cases, however, we wish to find some
quantity so related to the sides of a solid that it can
only be found by treating the lines which represent

their areas as directed magnitudes. Such cases, for

example, arise in the discussion of the shadows cast by

' As in calculating the cost of levelling and embanking, in the indicator
diagram, &c. It was first introduced by Mobius.
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the sun or of the pressure of gases upon the sides of

a containing vessel, &c. A method of combining

directed magnitudes will be fully discussed in the

following chapter. The conception of areas as directed

magnitudes is due to Hayward.

§ 12. On the Area of a Closed Tangle.

Hitherto we have supposed the areas we have talked

about to be bounded by a simple loop. It is easy,

however, to determine the area of a combination of

loops. Thus consider the figure of eight in fig. 45 which

has two loops : if we go round it continuously in the

direction indicated by the arrow-heads, one of these

loops will have a positive, the other a negative area, and

therefore the total area will be their difference, or zei'o

if they be equal. When a closed curve, like a figure

of eight, cuts itself it is termed a tangle, and the points

where it cuts itself are called hnots. Thus a figure of

eight is a tangle of one knot. In tracing out the area

of a closed curve by means of a line drawn from a fixed

point to a point moving round the curve, the area may
vary according to the direction and the route by which

we suppose the curve to be described. If, however, we
suppose the curve to be sketched out by the moving
point, then its area will be perfectly definite for that

particular description of its perimeter.

We shall now show how the most complex tangle

may be split up into simple loops and its whole area

determined from the areas of the simple loops. We
shall suppose arrow-heads to denote the direction in

which the perimeter is to be taken. Consider either

of the accompanying figures. The moving line o p

will trace out exactly the same area if we suppose it
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not to cross at the knot A but first to trace out the

loop A and then to trace out the loop a b, in both

cases going round these two loops in the direction

Fig. 45.

indicated by the arrow-heads. We are thus able in

all cases to convert one line cutting itself in a knot

into two lines, each bounding &, separate loop, which

just touch at the point indicated by the former knot.

This dissolution of knots may be suggested to the

reader by leaving a vacant space where the boundaries

of the loops really meet. The two knots in the fol-

lowing figure are shown dissolved in this fashion :

—

Fig. 46.

The reader will now find no difficulty in separating

the most complex tangle into simple loops. The posi-

tive or negative character of the areas of these loops
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will be sufficiently indicated by the arrow-heads on

their perimeters. We append an example :

—

Fib. 47.

In this case the tangle reduces to a negative loop

a, and to a large positive loop 6, within which are two

other positive loops c and d, the former of which con-

EiG. 48.

tains a fifth small positive loop e. The area of the

entire tangle then equals 6 + c + d + e— a. The
space marked s in the first figure will be seen from the

second to be no part of the area of the tangle at all.
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§ 13. On the Volumes of Space-Figures.

Let us consider first the space-figure bounded by

three pairs of parallel planes mutually at right angles.

Such a space-figure is technically termed a * rectangular

parallelepiped,' but might perhaps be more shortly

described as a ' right six-face.' We may first observe

that when one edge of such a right six-face is

lengthened or shortened in any ratio, the other non-

parallel edges being kept of a fixed length, the volume

Ji'iG. 49.

will be increased in precisely the same ratio. Hence,

in order to make any right six-face out of a cube we
have only to give the cube three stretches (or it may
be squeezes), parallel respectively to its three sets of

parallel edges. Let o a, o b, o o be the three edges of

the cube which meet in a corner o. Let o a be

stretched to o a', so that the ratio of o a' to A is

represented by a ; then if the figure is to remain right

all lines parallel to o a will be stretched in the same
ratio. The figure has now become a six-face whose
section perpendicular to o a' only is a square. Now
stretch o B to o b', so that the ratio o b' to b be
represented by I, and let all lines parallel to o b be
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increased in the same ratio ; the figure is now a right

six-face, only one set of edges of which are equal to the

edge of the original square. Finally stretch o c to o c',

so that and all lines parallel to it are increased in

the ratio of o o' to o c, which we will represent by c.

By a process consisting of three stretches we have thus

converted our original cube into a right six-face. If

the cube had been of unit-volume, the volume of our

six-edge would obviously be a 6 c, and we may show as

in the case of a rectangle (see p. 115) that ahc = cla

= hac,&c.; or the order of multiplying together three

ratios is indifferent. If we term the face a' o' of our

Fig. 50.

right six-face its lase and o b' its height, ac will repre-

sent the area of its base, and b its height, or the volume

of a right six-face is equal to the product of its base

into its height.
,

Let us now suppose a right six-face gadcebpg
to receive a shear, or the face b e p g to be moved in its

own plane in such fashion that its sides remain parallel

to their old positions, and b and e move respectively

along B p and e g. If b' e' g' p' be the new position of

the face b e g p, it is easy to see that the two wedge-

shaped figures B B e' b' and F G g' f' a d are exactly

equal; this follows from the equality of their corre-

sponding faces. Hence the volume of the sheared
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figure must be equal to the volume of tlie right six-face.

Now let us suppose in addition that the face b' e' g' f'

is again moved in its own plane into the position b" e"

g" p", so that b' and b' move along b' e' and p' g'

respectively. Then the slant wedge-shaped figures

b' b" p" p' a and e' e" g" p' d c will again be equal,

and the volume of the six-face b"e"g"p"adco
obtained by this second shear will be equal to the

volume of the figure obtained by the first shear, and

therefore to the volume of the right six-face. But by

means of two shears we can move the face b e g p to

any position in its plane, b" b" g" p", in which its sides

remain parallel to their former position. Hence the

volume of a six-face will remain unchanged if, one of its

faces, CODA, remaining fixed, the opposite face, b e g p,

be moved anywhere parallel to itself in its own plane.

We thus find that the volume of a six-face formed by

three pairs of parallel planes is equal to the product of

the area of one of its faces and the perpendicular

distance between that face and its parallel. For this

is the volume of the right six-face into which it may
be sheared ; and, as we have seen, shear does not alter

volume.

The knowledge thus gained of the volume of a six-

face bounded by three pairs of parallel faces, or of a

so-called parallelepiped, enables us to find the volume

of an oblique cylinder. A right cylinder is the figure

generated by any area moving parallel to itself in such

wise that any point p moves along a line p p' a,t right

angles to the area. The volume of a right cylinder is

the product of its height p p' and the generating area.

For we may suppose that volume to be the sum of a

number of elementary right six-faces whose bases, as

at p, may be taken so small that they will ultimately
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completely fill the area A c b d, and whose heights are

all equal to P p'.

We obtain an oblique cylinder from the above right

cylinder by moving the face a' o' b' d' parallel to itself

anywhere in its own plane. But such a motion will

only shear the elementary right six-faces, such as p p',

and so not change their volume. Hence the volume

of an oblique cylinder is equal to the product of its

base, and the perpendicular distance between its faces.

§ 14. On the Measurement of Angles.

Hitherto we have been concerned with quantities of

area and quantities of volume ; we must now turn to

quantities of angle. In our chapter on Space (p. 66)

we have noted one method of measuring angles ; but
that was a merely relative method, and did not lead us

to fix upon an absolute unit. We might, in fact, have
taken any opening of the compasses for unit angle, and
determined the magnitude of any other angle by its

ratio to this angle. But there is an absolute unit
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wliich naturally suggests itself in our measurement of

angles, and one wliich we must consider here, as we

shall frequently have to make use of it in our chapter

on Position.

Let A B be any angle, and let a circle of radius a

be described about o as centre to meet the sides of this

flO. 52.

angle in A and B. Then if we were to double the angle

A B, we should double the arc A B ; if we were to treble

it, we should treble the arc ; shortly, if we were to take

any multiple of the angle, we should take the same
multiple of the arc. We may thus state that angles at

the centre of a circle vary as the arcs on which they

stand. Hence if and 0' be two angles, which are

subtended by arcs s and s' respectively, the ratio of 8 to

6' will be the same as that of s to s'. Now suppose 6'

to represent four right angles ; then s' will be the entire

circumference, or, in our previous notation, 2 tt a. We
have thus

—

e ^ s

four right angles 2 ir a'

Now it is extremely convenient to choose a unit

angle which shall be independent of the circle upon
which we measure our arcs. We should obtain such
an independent unit if we took the arc subtended by it
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equal to the radius of the circle or if we took s = a.

In this case our unit equals -— of four right angles,

= — of two right angles, = '636 of a right angle
TT

approximately.

Thus we see that the angle subtended at the centre

of any circle by an arc equal to the radius is a constant

fraction of a right angle.

If this angle be chosen as the unit, we deduce from

the proportion is to ^ as s is to /, that must be to

unity as s is to the radius a ; or :

—

s = a^.

Thus, if we choose the above angle as our unit of

angle, the measure of any other angle will be the ratio

of the arc it subtends from the centre to the radius

;

but we have seen (p. 125) that the arcs subtended

from the centre in different circles by equal angles are

in the ratio of the radii of the respective circles.

Hence the above measurement of angle is independent

of the radius of the circle upon which we base our

measurement. This is the primary property of the so-

•called circular measurement of angles, and it is this

which renders it of such great value.

The circular measure of any angle is thus the ratio of
the arc it subtends from the centre of any circle to the
radius of the circle. It follows that the circular mea-
sure of four right angles Ls the ratio of the whole circum-

ference to the radius, or equals -^*; that is, equals

2 IT. The circular measure of two right angles will

then be tt, of one right angle ^, of three right

O
angles -—, and so on.
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§15. On Fractional Poivers.

Before we leave tlie subject of quantity it will he

necessary to refer once more to the subject of powers

which, we touched upon in our chapter on Number

(p. 16).

We there used a" as a symbol signifyinf^ the result

of multiplying a by itself n times. From this defini-

tion we easily deduce the following identity :

—

a" X a^ X a" X a" = a.'' + P + « + ',

For the left hand side denotes that we are fii'st to

multiply a by itself n times, and then multiply this by

a", or a multiplied by itself p times, and so on. Hence

we may write the left hand side

—

{ax ax ax a . . tow factors)

X {ax ax ax a . . to p factors)

X {axaxaxa . . to q factors)

X {axaxaxa . . to r factors).

But this is obviously equal to (a x a x a x a x ... to

n+p-^q + r factors), or to a'' + '' + « + '.

If b be such a quantity that b''=a,b is termed an nth

root of a, and this is written symbolically i = a /a.

Thus, since 8= 2', 2 is a 3rd, or cube root of 8. Or,

again, since 243= 3^ 3 is termed a 5th root of 243.

Now we have seen at the conclusion of our first

chapter that we can often learn a very great deal by
extending the meaning of our terms. Let us now see if

we cannot extend the meaning of the symbol a". Does
it cease to have a meaning when w is a fraction or

negative? Obviously we cannot multiply a quantity
by itself a fractional number of times, nor can we do
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SO a negative number of times. Hence the old mean-

ing of a", where n is a. positive integer, becomes sheer

nonsense when we try to adapt it to the case of n

being fractional or negative. Is then ct" in this latter

case meaningless?

In an instance like this we are thrown back upon

the results of our definition, and we endeavour to give

to our symbol snch a meaning that it will satisfy these

results. Now the fundamental result of our theory of

integer powers is that

—

a^ + p + i + r+... = o" X a^ X a" -x. or X ...

This will obviously be true however many quantities,

'"'ilPi 5fj
*> "we take. Now let us suppose we wish to inter-

- I
pret o"' where — is a fraction. We begin by as-

suming it satisfies the above relation, and in order to

arrive at its meaning we suppose that n = p = q

= r= . . . = —, and that there arem such quantities.

Then

n'rp+€[-\-r = mx— =1;m
L L L

and we find a' = a™ x a™ x a"' x ... to m factors

= («™) .

Thus a^ must be such a quantity that, multiplied by
itself m times, it equals a\ But we have defined above
(p. 144) an mth root of a} to be such a quantity that,
multiplied m times by itself, it equals aK Hence we

say that a™ is equal to an mth root of a' ; or, as it is

written for shortness,

—

a'"
m/ I
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We have thus found a meaning for a" when w is a frac-

tion from the fundamental theorem of powers.

We can with equal ease obtain from the same

theorem an iutelligible meaning for a" when w is a

negative quantity.

We have a" x af = a" """ ^. Now let us assume

p = — w in order to interpret a - *. We find a" x a ~ "

= a," - « = a« = 1 (by p. 31). Or dividing by a",

a-" = ~;
a"-

that is to say, a -
" is the quantity which, multi-

T^riied by a", gives a product equal to unity. The former

quantity is termed the inverse of the latter, or we may
say that a - " is the inverse of a". For example, what

is the inverse of 4 ? Obviously 4 must be multiplied

by \ in order that the product may be unity. Hence
4 ~

' is equal to \. Or, again, since 4 = 2^, we may say

that 2 ~ ^ is the inverse of 4, or 2^.

The whole subject of powers—integer, fractional,

and negative—is termed the Theory of Indices, and is

of no small importance in the mathematical investiga-

tion of symbolic quantity. Its discussion would, how-
ever, lead us too far beyond our present limits. It has

been slightly considered here in order that the reader

may grasp that portion of the following chapter in

which fractional powers are made use of.



CHAPTER IV.

POSITION.

§ 1. All Position is Relative.

The reader can hardly fail to remember instances wlien

he has been accosted by a stranger with some such

question as : 'Can you tell me where the 'George ' Inn

lies? '—'How shall I get to the cathedral ? '—'Where

is the London Eoad ?
' The answer to the question,

however it may be expressed, can be summed up in the

one word

—

There. The answer points out the position

of the building or street which is sought. Practically

the there is conveyed in some such phrase as the follow-

ing: 'Tou must keep straight on and take the first

turning to the right, then the second to the left, and

you will find the ' George ' two hundred yards down
the street.'

Let us examine somewhat closely such a question

and answer. ' Where is the ' George ' ? ' We may ex-

pand this into : ' How shall I get from here ' (the point

at which the question is asked) ' to the ' George ' ?

'

This is obviously the real meaning of the query. If the

stranger were told that the ' George ' lies three hundred
paces from the Town Hall down the High Street,

the information would be valueless to the questioner

unless he were acquainted with the position of the

Town Hall or at least of the High Street. Equally idle
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would be the reply: 'The 'G-eorge' lies just past

tlie forty-second milestone on the London Eoad,' sup-

posing him ignorant of the whereabouts of the London

Eoad.

Yet both these statements are in a certain sense

answers to the question : ' Where is the ' George ' ?

'

They would be the true method of pointing out the

there, if the question had been asked in sight of the

Town Hall or upon the London Eoad. We see, then,

that the query. Where ? admits of an infinite number

of answers according to the infinite number of posi-

tions—or possible heres—of the questioner. The where

always supposes a definite here, from which the desired

position is to be determined. The reader will at once

recognise that to ast, ' Where is the ' George ' ?
'

without meaning, ' Where is it with regard to some

other place ? ' is a question which no more admits of an

answer than this one :
' How shall I get from the

* George ' to anywhere ? ' meaning to nowhere in

particular.

This leads us to our first general statement with

regard to position. We can only describe the where

of a place or object by describing how we can get at it

from some other known place or object. We determine

its where relative to a here. This is shortly expressed

by saying that : All position is relative.

Just as the ' George ' has only position relative to

the other buildings in the town, or the town itself

relative to other towns, so a body in space has only

position relative to other bodies in space. To speak of

the position of the earth in space is meaningless unless

we are thinking at the same time of the Sun or of

Jupiter, or of a star—that is, of some one or other
of the celestial bodies. This result is sometimes
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described as the ' sameness of space.' By this we only

mean that in space itself there is nothing perceptible to

the senses which can determine position.' Space is, as

it -were, a blank map into which we put our objects ; it

is the coexistence of objects in this map which enables

us at any instant to distinguish one object from another.

This process of distinguishing, wMch supposes at least

two objects to be distinguished, is really determining

a this and a that, a here and a there ; it involves the

conception of relativity of position.

§ 2. Position may be Determined by Directed Steps,

Let us turn from the question: 'Where is the

' George ' ? ' to the answer :
' You must keep straight on

and take the first turning to the right, then the second

to the left, and you will find the * George ' 200 yards

down the street.'

The instruction ' to keep straight on ' means to keep

in the street wherein the question has been asked, and

in a direction (' straight on ') suggested by the previous

motion of the questioner, or by a wave of the hand from

the questioned. Assuming for our present purpose

that the streets are not curved, this amounts to : Keep
a certain direction. How far? This is answered by the

second instruction : Take the first turning on the right.

More accurately we might say, if the first turning to the

right were 160 yards distant : Keep this direction for

150 yards. Let this be represented in our figure by the

step A B, where A is the position at which the question

is asked. At b the questioner is to turn to the right

and, according to the third instruction, he is to pass the

first turning to the left at c and take the second at d.

' We shall return to this point later.
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More accurately we might state the distance B D to be,

say, 1 80 yards. Then we could combine our second and

third instructions by saying : From B go 180 yards in

a certain direction, namely, B d. To determine exactly

what this direction b D is with regard to the first direction

A B, we might use the following method. If the stranger

did not change his direction at b, but went straight on

for 180 yards, he would come to a point d'. Hence if

we measured the angle d'bd between the street in which

the question was asked and the first turning to the right,

/
a

Fig. 68.

we should know the direction of b D and the position of

D exactly. It would be determined by rotating bd'

about b through the meastired angle d'b d. If we adopt

the same convention for the measurement of positive

angles as we adopted for positive areas on p. 133, the

angle d'b d is the angle greater than two right angles

through which B d' must be rotated counter-clockwise

in order to take it to the position b d. Let us term this

angle d'b d for shortness )8, then we may invent a new
symbol {/S} to denote the operation : Turn the direction

you are going in through an angle yS counter-clockwise.
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If we use tHe symbol 7r/2 to denote an angle equal to a

right angle, we have the following symbolic instructions

:

{ } = Keep straight on.

{ •7r/2 } = Turn at right angles to the left.

{ TT } = Turn right round and go back.

{37r/2} = Turn at right angles to the right.

Thus for a turning from a b to the left the angle of

our symbolic operation will be less, for a turning from

AB to the right greater, than two right angles.

If the directed person had gone to d' instead of to

D, he would have walked 150 yards to b and then 180

yards to d' ; he would thus have walked A b + b d', or

150 yards + 180 yards. In order to denote that he is

not to continue straight on at b we introduce the opera-

tor of turning, namely {^}, before the 180 yards, and

read 150 + {/S} 180 as the instruction : Go 150 yards

along some direction a b, and then, turning your direc-

tion through an angle /3 counter-clockwise, go 180

yards along this new direction.

We are now able to complete the symbolic expression

of our instructions for finding the ' George.' The
fourth instruction runs : Take a turning at d to the

left and go 200 yards along the direction thus de-

termined^ Let dg' represent 200 yards measured

from D along b d produced, then we are to revolve p g'

through a certain angle g'd g counter-clockwise, till it

takes up the position d g. Then g will be the position

of the ' George.' Let the angle g'd g be represented

by y. Our final instruction may be then expressed

symbolically by {y} 200.

Hence our total instruction may be written symboli-

cally

—

150 + {/3}180 + (71200,

where the units are yards.

8



152 THE COMMON SENSE OF THE EXACT SCIENCES.

But we have not yet quite freed this symbolic in-

struction from any suggestion of direction as determined

by streets ; the first 150 yards are still to be taken along

the street in which the question is asked. "We can get

rid of this street by supposing its direction determined

by the angle which a clock-hand must revolve through

counter-clockwise, to reach that direction, starting from

some other fixed or chosen direction. For example,

suppose the stranger to have a compass with him, and

at A let AN be the direction of its needle. Then we
might fix the position of the street A b by describing it

as a direction so many degrees east of north, or still to

preserve our counter-clockwise method of reckoning

angles, we might determine it by the angle a which

the needle would have to describe through west and

south to reach the position a b. We should then in-

terpret the notation {a} 150: Walk 150 yards along a

direction making an angle a with north measured

through west.

Our answer expressed symbolically is now entirely

cleared of any conception of streets. For,

{a} 150 + {/3}180 + {7} 200

is a definite instruction as to how to get from A to G

quite independent of any local characteristics. It ex-

presses the position of g with regard to a in a purely

geometrical fashion, or by a series of directed steps.

Expanded into ordinary English our symbols read

:

From a point a in a plane, take a step a b of 150 units

in a direction making an angle a with a fixed direction,

from B take a step b d of 180 units making an angle j8

with A B, and finally from D take a step D g of 200 units

making an angle y with b d. All the angles are to be

measured counter-clockwise in the fashion we have

described above.



posiTioif. 153

§ 3. The Addition of Directed Steps or Vectors.

If we now compare our figure with the symbolical

instruction {a} 150 + {y8}180 + {7)200, we see that

{a} 150 represents the step a b, when that step is

considered to have not merely magnitude but also

direction. Similarly b d and D a represent more than

linear expressions for number—they are also directed

steps. We shall then be at liberty to replace our

symbolically expressed instruction

W150 + {y8}180 + (7)200

by the geometrical equivalent

AB + BD + DG,

provided we understand by the segments A B, b d, d G-

and the symbol + something quite different to out

Fio. 54.

former conceptions. We give a new and extended
meaning to our quantity and to our addition.

AB + BD + DG no longer directs us to add the
number of units in b d to that in a b and to the sum of
these the number in d a, but it bids us take a step a b in
a certain direction, then a step b d from the finish of
the former step in another determined direction, and
finally from the finish d of this second step a third
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directed step, dg. The entire operation brings us

from A to G. Now it is obvious that we should also

have got to g had we taken the directed step ag.

Hence, if we gire an extended meaning to the word

'equal' and to its sign =, using them to mark the

equivalence of the results of two operations, we may

write

AG = AB + BD + DG,

i and read this expression :—A G equals the sum of A B,

B D and D G.

Steps such as we considered in our chapter on

Quantity, which were magnitudes taken along any one

straight line, are termed scalar steps, because they have

relation only to some chosen scale of quantity. We
add or subtract scalar steps by placing them end to end

in any straight line (see § 2 of Chapter III.)

A step which has not only magnitude but direction

is termed a vector step, because it carries us from one

position in space to another. It is usual to mark by an

arrow-head the sense in which we are to take this

directed step. For example in fig. 64 we are to step

from A to B, and thus the arrow-head will point towards

B for the step a b. In letters this is denoted by writing

A before b. The method by which we have arrived at

the conception of vector steps shows us at once how to

add them.

Vector steps are added by placing them end to end

in such fashion that they retain their own peculiar

directions, and so that a point moTing continuously

along the zigzag thus formed will always follow the

directions indicated by the arrow-heads. This may be

shortly expressed by saying the steps are to be arranged

in continuous sense. The sum of the vector steps is

then the single directed step which joins the start of
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the zigzag thus formed to its finish. In fig. 65 let ab,cd,

ef, and ghhe directed steps. Then let a b be drawn

equal and parallel to ah; from B draw b c equal and

parallel to c d, from o draw c d equal and parallel to ef,

and finally from D draw d e equal and parallel to g h.

We have drawn our zigzag so that the arrow-heads all

have 'a continuous sense.' Hence the directed step

A E is the sum of the four given vectors. If, for example,

at we had stepped o d', equal and parallel to ef, hut on

the opposite side of B c to d, and then taken d'e'.

equal and parallel to g h, the reader will remark at once

that the arrow-heads in e c, d' and d'e' are not in

continuous sense, or we have not gone in the proper

direction at c.

Should the vector steps all have the same direction,

the zigzag evidently becomes a straight line ; in this

case the vector steps are added precisely like scalar

quantities ; or, when vector steps may be looked upon

as scalar, our extended conception of addition takes the

ordinary arithmetical meaning.

We cannow state a very important aspect of position
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in a plane ; namely, if the position of G relative to A
be denoted by the directed step or vector a g, it may
also be expressed by the sum of any number of directed

steps, the start of the first of such steps being at a and

the finish of the last at g (see fig. 56). We may write

this result symbolically :

—

AG = AB + BO + CD + DE + EF + FG.

It will be at once obvious that in our example as to

finding the 'George,' the stranger might have been

directed by an entirely different set of instructions to

Fig. 56.

his goal. In fact, he might have been led to make
extensive circuits in or about the town before he reached

the place he was seeking. But, however he might get

to G, the ultimate result of his wanderings would be

what he might have accomplished by the directed step

A G supposing no obstacles to have been in his way (or,

*as the crow flies'). Hence we see that with our

extended conception of addition any two zigzags of

directed steps, a b c d e f g and a b' c' d' e' f' g (which

may or may not contain the same number of com-

ponent steps), both starting in A and finishing in g.
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must be looked upon as equivalent instructions ; or, we
must take

AB + BC + CD + DE + EF + PG = AG =
AB' + b'o' + c'd' + D'E' + e'p' + p'g.

In other words, two sets of directed steps must be

held to have an equal sum, when, their starts being

the same, the steps of both sets will, added vector-wise

have the same finish.

Now let us suppose our stranger were unconsciously

standing in front of the ' George ' when he asked his

question as to its whereabouts, and further let us sup-

pose that the person who directed him gave him a per-

fectly correct instruction, but sent him by a properly

chosen set of right and left turnings a considerable

distance round the town before bringing him back to

the point A from which he had set out. In this case

we must suppose the * George ' not to be at the point

g, but at the point A. The total result of the stranger's

wanderings having brought him back to the place from

which he started can be denoted by a zero step; or

we must write (fig. 66)

—

AB+BO-f-CD + DE + EF + PG4-GA = . . . (i)

We may read this in words : The sum of vector steps

which form the successive sides of a closed zigzag is

zero. Now we have found above that

—

AB-|-BO + CD + DE-|-EF + FG = AG (ii)

Hence, in order that these two statements (i) and (ii)

may be consistent, we must have — G A equal to a g, or

A G + G A = 0.

This is really no more than saying that if a step be

taken from A to G, followed by another from G to a, the

total operation will be a zero step. Yet the result is
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interesting as showing that if we consider a step from

A to G as positive, a step from G to A must be considered

negative. It enables us also to reduce subtraction of

vectors to addition. For if we term the operation

denoted by a b — d c a subtraction of the vectors A b
and D c, since D c + c D = 0, the operation indicated

amounts to adding the vectors A b and c d, or to

A B + D. Hence, to subtract two vectors, we reverse

the sense of one of them and add.

X- E. P S q TV
Fio. 57.

The result a G + g a = can at once be extended to

any number of points lying on a straight line. Thus, if

P Q E s T u V be a set of such points

—

PQ + QE + ES + ST+TU + UV + VP = 0.

For starting from p and taking in succession the steps

indicated, we obviously come back to p, or have per-

formed an operation whose result is equivalent to zero,

or to remaining where we started.

§ 4. The Addition of Vectors oheys the Commutative

Law.

We can now prove that the commutative law holds

for our extended addition (see p. 5). First, we can

show that any two successive steps may be interchanged.

Consider four successive steps, A b, b c, c d, and d e.

If at B instead of taking the step b c we took a step

b h equal to c d in magnitude, sense and direction, we
could then get from h to D by taking the step hd.

Now let b D be joined ; then in the triangles b h D, D c b

the angles at B and D are equal, because they are formed

by the straight line r. D falling on two parallel lines b h
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and D ; also the side b d is common, and b h is equal

to d D. Hence it follows (see p. 73) that these triangles

are of the same shape and size, or h d is equal to b o
;

and again the angles b d h and d b o are equal, or h D

and b c are parallel. Thus the step h d is equal to the

step B in direction, magnitude and sense. We have

then from the two methods of reacting d from B,

BO + CD = BD = BH + nD
= CD + BO

by what we have just proved.

FiQ. 58.

Hence any two successive steps may be inter-

changed. By precisely the same reasoning as we have

used on p. 11 we can show that if we may inter-

change any two successive steps of our zigzag we may
interchange any two steps whatever by a series of

changes of successive steps; that is, the order in

which vectors are added is indifferent.

The importance of the geometiy of vectors arises

from the fact that many physical quantities can be re-

presented as directed steps. We shall see in the suc-

ceeding chapter that velocities and accelerations are

quantities of this character.

§ 5. On Mdliods of Determining Position in a Plane.

It' has been remarked (see p. 99) that scalar

quantities may be treated as steps measured along a
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straight line. In this case we only require one point on

this line to be given, and we can determine the relative

position of any other by merely stating the magnitude

of the intervening step. A line is occasionally spoken

of as being a space of one dimension; in one-dimensioned

space one point suffices to determine the relative posi-

tion of all others.

When we consider however position in a plane, in

order to determine the whereabouts of a point p with

regard to another A we require to know not only the

magnitude but the direction of the step A p. Hence

what scalar steps are to one-dimensioned space, that

x" -y'"
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scalar magnitude r and r' respectively, there will be

two points corresponding to any two given, values of

r and r ; namely p and p' the intersections of the two

circles with centres at A and b and radii equal to r and

/ respectively. We may distinguish these points as

being one above, and the other below ab. Only in

the case of the circles touching will the two points

coincide ; if the circles do not meet, there will be no

point.

If p moves so that for each of its positions with re-

gard to A and B the quantities r and r' satisfy some defi-

nite relation, we shall obtain a continuous set of points

in the plane or a curved line of some sort. For example,

if we fasten the ends of a bit of string of length I to

Fig. 60.

pins stuck into the plane of the paper at A and b, and
then move a pencil about so tha.t its point p always

remains on the paper, and at the same time always

keeps the string a p b taut round its point, the pencil

will trace out that shadow of the circle which we have

called an ellipse.

In this case r+ /=AP4-PB= I, the constant length

of the string. This relation r -t- r' = Z is an equation

between the scalar quantities r, / and I, which holds

for every point on the ellipse, and expresses a metric

property of the curve with regard to the points A and b.

If on the other hand we cause p to move so that the

difference of a p and b p is a constant length (r—r'= Q,

then p will trace out the curve we have termed the
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hyperbola. We can cause P to move in this fashion bj'

means of a Tery simple bit of mechanism. Suppose a

rod B L capable of revolving about one of its ends B : let

a string of given length be fastened to the other end

L and to the fixed point a. Then if, as the rod is

moved round b, the string be held taut to the rod by a

Fig. 61.

pencil point p, the pencil will trace out the hyperbola.

For since lp + pa equals a constant length, namely

that of the string, and l p + pb equals a constant length,

namely that of the rod, their difference or pa—pb is

equal to the constant length which is the difference of

the string and the rod.

Fia. 62.

The points A and b are termed in the cases of both

ellipse and hyperbola the foci. The name arises from

the following interesting property. Suppose a bit of

polished watch spring were bent into the form of an

ellipse so that its flat side was turned towards the foci

of the ellipse ; then if a hot body were placed at one

focus B, all the rays of heat or light radiated from b
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which fell upon the spring would be collected, or, as it is

termed, ' focussed ' at A ; hence A would be a much
brighter and hotter point than any other within the

ellipse (b of course excepted). The name focus is

from the Latin, and means a fireplace or hearth.

This property of the arc of an ellipse or hyperbola, that

it collects rays radiating from one focus in the other,

depends upon the fact that a p and p B make equal

angles with the curve at p. This geometrical relation

corresponds to a physical property of rays of heat and

light; namely, that they make the same angle with a

reflecting surface when they reach it and when they

leave it.

A third remarkable curve, which is easily obtained

from this our first method of considering position, is

the lemniscate of James Bernoulli (from the Latin

lemniscus, a ribbon). It is ti'aced out by a point p which

moves so that the rectangle under its distances from a

and B is always equal to the area of a given square

i'lQ. 63

(r . / = c"). If the given square is greate]' than the

square on half A B, it is obvious that p can never

cross between a and b ; if it is equal to the square

on half A B, the lemniscate becomes a figure of eight

;

while if it is less, the curve breaks up into two loops.

In our figure a series of lemniscates are represented.

A set of curves obtained by varying a constant, like the
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given square in tlie case of the lemniscate, is termed a

family of curves. Such families of curves constantly

occur in the consideration of physical problems.

§ 6. Polar Co-ordinates.

(/3) The points A and b determine a line whose

direction is A b. If we know the length a p and the

angle bap, we shall have a means of finding the

position of p. Let r be the number of linear units in

A p and 6 the number of angular units in b a p, where

r and 6 may of course be fractions. In measuring the

angk we shall adopt the same convention as we have

employed in discussing areas (see p. 134) ; namely, if a

line at first coin<jident with ab were to start from

Fio. 64.

that position, and supposed pivoted at A to rotate

counter-clockwise till it coincided with ap, it would

trace out the angle 0. Angles traced out clockwise will

like areas be considered negative. Thus the angle bap'

below ab would be obtained by a rotation clockwise

from ab to ap', and must therefore be treated as

negative. On the other hand, we might have caused a

line rotating about a to take up the position a p' by

rotating it counter-clockwise through an angle marked

in our figure by the dotted arc of a circle. Further we
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might obviously have reached ap by a line rotating

about A clockwise, and might thus represent the position

of p by a negative angle. But even after we had got to

p we might cause our line to rotate about a a complete

number of times either clockwise or counter-clockwise,

and we should still be at the end of any such number

of complete revolutions in the same position A p.

We have then the following four methods of rotating

a line about a from coincidence with a b to coincidence

with A p :
—

(i) Counter-clockwise from a E to a p.

(ii) Clockwise from a b to a p.

(iii) The first of these combined with any number
of complete revolutions clockwise or counter-

clockwise,

(iv) The second of these combined with any number
of complete revolutions clockwise or counter-

clockwise.

The following terms have been adopted for this

method of determining position in space :

—

The line a b from which we begin to rotate our line is

termed the initial (' beginning ') line ; the length A p is

termed the radius vector (from two Latin words signify-

ing the carrying rod or spoke, because it carries the

point p to the required position) ; the angle bap is

termed the vectorial angle, because it is traced out by

the radius vector in moving from A B to the required

position A p ; A is termed the pole, because it is the end

of the axis about which we may suppose the spoke to

turn. Finally a p (= r) and the angle bap (= 6} are

termed the polar co-ordinates of the point p, because

they regulate the position of p relative to the pole a and

the initial line a b.
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§ 7. The Trigonometrical Ratios.

If p M be a perpendicular dropped from P on A B, the

ratios of the sides of the right-angled triangle pam
have for the purpose of abbreviation been given the

following names :

—

— , or the ratio of the perpendicular to the hypo-

thenuse, is termed the sine of the angle bap.

— , or the ratio of the base to the hypothenuse, is

termed the cosine of the angle bap.

— , or the ratio of the perpendicular to the base, is
am

termed the tangent of the angle bap.

— , or the ratio of the base to the perpendicular, is

termed the cotangent of the angle bap.

If be the scalar magnitude of the angle bap these

ratios are written for shortness, sin6, cosd, tanO, and

cotd, respectively. Let us take any other point q on a p,

and drop Q N perpendicular to A b, then the triangles

Q A If, p A M are of the same shape (see p. 106), and thus

the ratios of their corresponding sides are equal. It

follows from this that the ratios sine, cosine, tangent,

and cotangent for the triangles Q A n and p a m are the

same. Hence we see that sin^, cos0, tan^, and cot5

are independent of the position of p in A p ; they are

ratios which depend only on the magnitude of the angle

B A p or 6. They are termed (from two Greek words

meaning triangle-measurement) the trigonometrical

ratios of the angle 6. The discussion of trigonometrical

ratios, or Trigonometry, forms an important element of
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pure mathematics. The names of the trigonometrical

ratios themselves are derived from an older terminology

which connected these ratios with the figure supposed

to be presented by an archer whose bow string was

placed against his breast.'

§ 8. Spirals,

Let us suppose the spoke a p to revolve about the pole

A, and as it revolves let the point p move along the spoke

in such fashion that the magnitude r of a p is always de-

finitely related in some chosen manner to the magnitude

^ of B A p. Then if p be taken as the point of a pencil

it will mark out a curved line on the plane of the paper.

Fia. 65.

Such a curved line is termed a polar curve or spiral,

the latter name from a Greek word denoting the coil,

as of a snake, to which some of these curves may be

considered to bear resemblance.

One of the most interesting of these spirals was

invented by Conon of Samos {fl. B.C. 250), but its

' In our figure the angle bap has been taken less than a right angle,

it may have any magnitude whatever. It has been found useful to establish

a convention with regard to the signs of the pei?pendiuular p m and the base

AM. pmIs considered positive when it falls above, but negative when it

falls below the initial line ab ; am is considered positive when m falls to.

the right, but negative when it falls to the left of A. The reader will under-

stand the value of this convention better after examining §§ 11, 12.
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chief properties having been discussed by Archimedes,

it is usually called by his name. The spiral of Archi-

medes is defined in the following simple manner. As
the spoke a p moves uniformly round the pole, the point

p moves uniformly along the spoke. Let c be the posi-

tion of p when the spoke coincides with the starting

line A B, and let a c contain a units of length. Then if p

be the position of the pencil-poini when the spoke has

described an angle bap containing 6 units of angle, and

if A o' be measured along a p equal to A 0, the point will

have described the distance c' p while the spoke was

tvirning through the angle cap. But since the point

and spoke are moving uniformly, the distance c' p must

be proportional to the angle cap, or their ratio must

be an unchangeable quantity for all distances and

angles. Let h be the distance traversed by the point

along the spoke while it turns through unit angle,

then c' p must be equal to the number of units in o a p

multiplied by 6. Using r to denote the magnitude of

A p we have

c' p = 6 X 6, but c' P = r — a

;

Thus

:

r = a + he.

This relation between r and B is termed the polar equa-

tion to the spiral.

The following easily constructed apparatus will

enable us to draw a spiral of Archimedes, d e p is a

circular disc of chosen radius ; upon the edge of this

disc is cut a groove. To the centre A of the disc is

attached a rod or spoke which can be revolved about a
as a pole ; at the other end of this rod is a small grooved

wheel or pulley G. A string is then fastened to some
point D in the groove of the disc, and passing round

the pulley G is attached to a small block p which holds
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a pencil and is capable of sliding in a slot in tlie spoke.

If this block be fastened by a piece of elastic to a, the

string from p to G and then from g to tlie groove on the

disc will remain taut. Now supposing the disc to be

held firmly pressed against the paper, and the spoke

A to be turned about A counter-clockwise, the pencil

p will describe the required spiral. For the string

touching the disc in the point T the figure GAT always

remains of the same size and shape as we turn the

spoke about the pole ; hence the length of string G T is

W Fig. 66.

constant. Thus if a length of string represented by
the arc D t be wound on to the disc as we turn the

spoke from tbe position ab to the position ap, the

length PG (since the length gt always remains the

same) must lose a length equal to d t as p moves from

C to p. But the amount of string d t wound on to the

disc is proportional to the angle through which the

spoke A p has been turned ; hence the point p must have

moved towards G through a distance proportional to

this angle, or it has described a spiral of Archimedes.
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Once in possession of a good spiral of this kind we

can solve a problem which often occurs, namely to divide

an angle into any number of parts having given ratios.

Let the given angle be placed with its vertex at the

pole of the spiral and let the radii vectores A c and ap

be those which coincide with the legs of the angle.

About the pole a describe a circular arc with radius A c to

meet a p in o'. Now let us suppose the problem solved

and let the radii vectores a D, a e, A p be those which

divide the angle into the required proportional parts.

If these radii vectores meet the circular arc o o' in d', e'.

Fio. 67.

p' respectively, then by the fundamental property of the

spiral we have at once the lines d'd, e'e, f'e, c'p in the

same ratio as the angles cad, c a e, cap, cap. Thus

if we measure lengths a c£, A e, a/ equal to a d, A e, A p

respectively along ap, c'p will be divided in def into

lengths which are proportional to the required angles.

Conversely, if we were to divide c'p into segments c'd, d e,

ef, and/p in the same ratio as the required angular

division, we should obtain lengths Ad, a e, a/, which

would be the radii of circles with a common centre

A cutting the spiral in the required points of angular

division. The spiral of Archimedes thus enables us to
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reduce tlie division of an angle in any fashion to the

like division of a line.

Now the division of a line in any fashion, that is,

into a set of segments in any given ratio, is at once

solved so soon as we have learnt by the aid of a pair of

compasses or a ' set square ' to draw parallel lines. Thus
suppose we require to divide the line o'p into segments in

the ratio of 3 to 5 to 4 ; we have only to mark off along

any line through c', say o'q, steps c'b, e s, s t placed end

to end and containing 3, 5, and 4 units ofany kind respec-

tively. If the finish of the last step t be joined to p

Fio. 68.

and the parallels nr, ss to t p through E and s be drawn
to meet c'p in r and s, then c'p will be divided in r and s

into segments in the required ratio of 8 to 5 to 4. This

follows at once from our theory of triangles of the same

shape (see p. 106). For, since e o' r, s c's, and t c'p are

such triangles, they have their corresponding sides pro-

portional, and the truth of the proposition is obvious.

A spiral of Archimedes accurately cut in a metal or

ivory plate is an extremely useful addition to the ordi-

nary contents of a box of so-called mathematical instru-

ments.

§ 9. The Equiangular Spiral.

Another important spiral was invented by Descartes,

and is termed from two of its chief properties either the

equiangular or the logarithmic spiral.
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Let B o A be a triangle with a small angle at o, and
whose sides o a and o b are of any not verj greatly differ-

ent lengths. Upon o b and npon the opposite side of it

to A construct a triangle boo of the same shape as the

triangle a o b, and in such wise that the angles at b and

A are equal. Then upon o place a triangle cod of the

same shape as either boo or aob; upon o d a fourth

triangle doe, again of the same shape ; upon o e a fifth

triangle, and so on. We thus ultimately form a figure

consisting of a number of triangles a o b, b o 0, c d.

Fig. 69.

DOE, &c., of the same shape, all placed with one of their

equal angles at o, and in such fashion that each pair

has a common side consisting of two non-correspondino'

sides (that is, of sides not opposite to equal angles) . The
points ABODE, &c., will form the angles of a polygonal
line, and if the angles at o are only taken small enough
the sides of this polygon will appear to form a continuous
curved line. This curved line, to which we can approach
as closely as we please by taking the angles at o smaller
and smaller, is termed an equiangular spiral. It derives

its name from the following property,

—

a b, b c, c d, &e.,
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being corresponding sides of triangles of the same shape,

make equal angles o b a, o c b, o d o, &c., with the cor-

responding sides B, o 0, o D, &c. ; but when the angles

at are taken very small A b, b c, c d, &c., will appear as

successive elements of the curved line or spiral. Hence

the arc of the spiral meets all rays from the pole o at

the same constant angle.

Let us now endeavour to find the relation between

any radius vector o P (= r) a,nd the vectorial angle A o p

(=6).

Since all our triangles A o b, b o o, c o d, &c., are of

the same shape, their corresponding sides must be pro-

portional (see p. 106) ; or,

OB _ 00 _ OD _OE_OP_»
OA OB 00 OD OE

Each of these equal ratios will therefore have the same

scalar value ; let us denote that value by the symbol [i.

Then we must have

OB = tl.OA; 0C = /4.0B; OD = /i.O0; &c.

Or, 0B = /i.0A;0C=/u,''.0A;0D =
fj? .OK, and so on.

Hence if o N be the radius vector which occurs after n

equal angles are taken at o, we must have

N = /i" . o A.

Now let the very small angles at o be each taken

equal to some small part of the unit angle ; thus we
might take them -^-^ or

^ „'„ „ of the unit angle. We
will represent this fraction of the unit angle by 1/6,

where we may suppose h a whole number for greater

simplicity. Turther let us use \ to denote the 6*

power of /i, or \ = /t*. With the notation explained on

p. 144 we then term jm a 6* root of \, and write
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Hence finally we have o n = o a . \" " ^'^ or in words

:

The base of the w* equal-shaped triangle placed about

is equal to the base of the first multiplied by a

certain quantity X raised to the power of w-times the

quantity 1/6 which expresses the magnitude of the

equal angles at O in units of angle.

Now let the spoke or ray o p fall within the angle

which is formed by the successive rays o N and o q of

the system of equal-shaped triangles round o. Then o n

makes an angle w-times l/b, and OQ an angle (n + 1)-

times 1/& with o a. Hence the angle a o p, or 6, must lie

in magnitude between njb and {n + 1)/&. Similarly the

magnitude of P must lie between those of o N and o Q.

Now by sufficiently decreasing the angles at o we can

approach nearer and nearer to the form of the spiral,

and the ray o p must always lie between two successive

rays of our system of triangles. The angle 6, which will

thus always lie between njb and (w +!)/?>, can only

differ from either of them by a quantity less than 1/&.

If then b be taken large enough, or the equal angles at

small enough fractions of the unit angle, this dif-

ference 1/6 can be made vanishingly small. In this case

we may say that in the limit the angle becomes equal to

n/6 and the ray o p equal to o n or o Q, which will thus

be ultimately equal. Hence o p= o a . X"'*= o A . \*, or in

words : If a ray o p of the equiangular spiral make
an angle a o p with another ray o A, the ratio of o p to

o A is equal to a certain number X raised to the power
of the quantity which expresses the magnitude of the

angle A o p in units of angle.

If a and r be the numbers which express the

magnitudes of o a and o p, we have r=aX'. This is

termed the polar equation of the spiral.

We proceed to draw some important results from a
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consideration of this spiral. The reader will at once

obserTO that the ratio of any pair of rays o p and o q is

equal to the ratio of any other pair which include an

equal angle, for the ratio of any pair of rays depends

only on the included angle. Further, if we wanted to

multiply the ratio of any two quantities p and q by the

ratio of two other quantities r and s we might proceed

as follows : Find rays of the equiangular spiral o p, o Q,

E, s containing the same number of linear units as

p, g, r, s contain units of quantity (see p. 99), and let

d be the angle between the first pair, ^ the angle

between the second pair.

Then

^ = X^and^ = X*;
OP OE

whence it follows that ^ x — = \» x \* = \«+*,
OP OE

or is equal to the ratio of any pair of rays which
include an angle 6+ ^. Thus if the angle qot be

taken equal to ^, and o t be the corresponding ray of

the spiral, -— = X*+*, and is a ratio equal to the pro-

duct of the given ratios. Hence to find the product

of ratios we have only to add the angles between pairs

of rays in the given ratios, and the ratio of any two

rays including an angle equal to the sum will be equal

9
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to the required product. Thus the equiangular spiral

enables us to replace multiplication hy addition. This is

an extremely valuable substitution, as it is much easier

to add than to multiply.

Since^ divided by— = x« divided by \*= \»-*
OP OB,

it is obvious that we may in like fashion replace the

division of two ratios by the subtraction of two

angles. A set of quantities like the angles at the pole

of an equiangular spiral which enables us to replace

multiplication and division by addition and subtrac-

tion is termed a table of logarithms. Since the equi-

angular spiral acts as a graphical table of logarithms,

it is frequently termed the logarithmic spiral.

§ 10. On the Nature of Logarithms.

Since in the logarithmic spiral o p = o A x X*, where

6 is equal to the angle A p, we note that as increases,

or as the ray o p revolves round o, o p is equally mul-

tiplied during equal increments of the vectorial angle

A p. When one quantity depends upon another in

such fashion that the first is equally multiplied for

equal increments of the second, it is said to grow at

logarithmic rate. This logarithmic rate is measured by

the ratio of the growth of the first quantity for unit

increment of the second quantity to the magnitude of

the first quantity before it started this growth.

Let us endeavour to apply this to our equiangular

spiral. Suppose aob, boo, cod &c. to be as before

the triangles by means of which we construct it (see

fig. 69), the angles at o being all equal and very small.

A.long o B measure a length o a' equal to o A ; along o 0,

a length b' equal to o b ; along o d, a length c'
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"equal to o o, and so on. Then a'b, b'o, c'd, &c., will

be tlie successive growths as a ray is turned succes-

sively from A to o B, from o b to o 0, and so on. Join

A a', b b', c', &c. Now the triangles A o b, boo,
COD, &c., are all of the same shape ; so too are the

isosceles triangles a o a', b o b', o o c', &c. Hence the

differences of the corresponding members of these sets,

A a'b, b b'o, c c'd, &c., must also be of equal shape, and
thus their corresponding sides proportional. It follows

then that the lengths

a'b, b'o, c'd, &c., are in the same ratio as the lengths

a'A, b'b, o'c, &c., or again as the lengths

oa, OB, oc, &c.

Wlience we deduce that

— — ^ = — =&e
OA ~ OB ~ 00 ~

Or, the growth a'b is always in a constant ratio to

the growing quantity o a.

Now, if the angles at o be very small, the line A a'

will practically coincide with the arc of a circle with

centre o and radius equal to o a. Hence (see p. 143)

A a' will ultimately equal o A x the angle a o a', while

the angle at a' will ultimately be equal to a right

angle.

Further, the ratio of a'b to a a' remains the same
for all the little triangles a a'b, b b'o, c o'd, &c. It is in

each case the ratio of the base to the perpendicular when
we look upon these triangles with regard to the equal

angles aba', bob', o d c', &c. Now these are the

angles of the triangles which give the spiral its name.

Let any one of them, and therefore all of them, be equal

to a. By definition the cotangent of an angle (see p. 166)

is equal to the ratio of the base to the perpendicular.
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Hence
, a'b a'b

cota = —; = ^ 7j
A A o A X angle a o a

or — = ansrle A o a' x cota,
OA

Now a'b denotes the growth for an angle aoa',

supposed very small ; whence it follows that the loga-

rithmic rate, or the ratio of the growth to the growing

quantity for unit angle, is equal to cota. Thus the

logarithmic rate for the growth of the ray of the equi-

angular or logarithmic spiral, as it descrihes equal

angles about the pole, is equal to the cotangent of the

angle which gives its name to the spiral.

Let us suppose o a to be unit of length, then, since

o p = o A X X'-, the result o p of revolving the ray o a

through an angle 6 equal to unity will be \, or X is the

result of making unity grow at logarithmic rate cota,

Now let us denote by the symbol e the result of

making unity grow at logarithmic rate unity during

the description of unit angle. Then e will have some

definite numerical value. This value is found, by a pro-

cess of calculation into which we cannot enter here, to be

nearly equal to 2'718, This means that, if while unit

ray were turned through unit angle it grew at loga-

rithmic rate unity, its total growth (1"718) would lie

between eight and nine-fifths of its initial length. Since

e is the result of turning unit ray through unit angle,

and since the ray is equally multiplied for equal multi-

ples of angle, ef must represent the result of turning unit

ray through 7 unit angles. Hitherto we have been

concerned with unit ray growing at logarithmic rate

unity ; now let us suppose unity to grow at logarithmic

rate y ; then it grows 7 times as much as if it grew at

logarithmic rate unity, or the result of turning unit ray
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througli unit angle, while it grows at logarithmic rate

7, must be the same as if we spread I/7 of this rate

of growth over 7 unit angles ; that is, as if we caused

unity to grow at logarithmic unity for 7 unit angles,

or eT. Hence &'' denotes the result of making unit ray

grow at logarithmic rate unity while it describes 7 unit

angles, or again of making unit ray grow at loga-

rithmic rate 7 while it describes a unit of angle.

Let us inquire what is the meaning of & when 7 is

a commensurable fraction equal to s/i, s and t being

integers. Let x be the as yet unknown result of turn-

ing unit ray through an angle equal to 7 while it

grows at unit logarithmic rate; then a;' will be the

result of turning unit ray through t angles equal to

7 while it grows at unit rate ; but t angles equal to 7
form an angle containing s units, or this result must

be the same as the result of turning unity through an

angle s while it grows at logarithmic rate t. Thus we
have »' = e'. That is, a; is a i-th root of e>, or, as we write

it, equal to e'/' = ev. Thus gi, if 7 be a commensurable

fraction, is the result of causing unit ray to grow at

logarithmic rate unity through an angle equal to 7, or

as we have seen at logarithmic rate 7 through unit

angle.

Now let us suppose it possible to find a commen-
surable fraction 7 equal to cota; then the result of

making unity grow at logarithmic rate cota as it is

turned through unit angle must be e^. But we have

seen (see p. 178) that it is equal to \. Hence

A, = eT.

Further, the result of making unity grow at loga-

rithmic rate cota as it is turned through an angle Q

is \' ; or,

\9 = ev«.
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Thus we may write o P = o A . X* = A •. e''*,

or with otir previous symbols,

r = a. ev».

This is therefore the equation to our equiangular

spiral expressed in terms of the quantity e.

If we take a spiral in which a is the unit of length,

and in which cota or 7 is also unity, we find

r = e*.

The symbol e* is then read the exponential of 6, and

is termed the natural logarithm of r. It is denoted

symbolically thus :

—

= log^r.

The quantity e is termed the base of the natural system

of logarithms. Our spiral would in this case form a

graphical table of natural logarithms.

Eeturning to the equation

r = a . eT*,

let us suppose y so chosen that e'>'=10 ; then 7 will re-

present the angle through which unit ray must be

turned in order that, growing at unit logarithmic rate,

it may increase to ten units. Again taking a to be

of unit length we find r=e>*=10*. is in this case

termed the logarithm of r to the base 10, and this is

symbolically expressed thus :

—

= logio «••

The spiral obtained in this case would form a graphical

table of logarithms to the base 10. Such logarithms

are those which are usually adopted for the purposes of

practical calculation.

Natural logarithms were first devised by John

Napier, who published his invention in 1614.' Loga-

• Logarithmorum Canonis Descripiio. 4to. Edinburgh, 1614.
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ritlims to the base 10 are now used in all but the

simplest numerical calculations which it is needful to

make in the exact sciences; their value arises solely

from the fact that addition and subtraction are easier

operations than multiplication and division.

§ 11. T/ie Cartesian Method of-Determining Position.

(7) In order to determine the position of a point p,

in space of two dimensions, we may draw the line b a b',

joining the given points A B and another line c A c' at

right angles to this through a. These will divide the

plane into four equal portions termed quadrants. Let

Pj M be a line drawn from the point p, (the position of

B'



182 THE COMMON SENSE OF THE EXACT SCIENCES.

shall take + A m to mean a step forwards along A B,

and —AM to mean a step am' hackwards along ab'

througli the same distance a m. Let us use the letter

* to denote the operation, which we have represented

hy (7r/2) on p. 151. Thus applied to unit step it will

signify : Step forwards in the direction of the previous

step and from its finish unit distance, and then

rotate this unit distance through a right angle

counter-clockwise about the finish of the previous step.

The operator i placed before a step, thus i.MP,, will

then be interpreted as follows: Step from m in the

direction A b a distance equal to the length m p„ and

then rotate this step M p, about m counter-clockwise

through a right a.ngle. We are thus able to express

symbolically the position of p, relative to A, or the step

A Pj, by the relation

AP, = AM 4 i.MPi.

If we had to get to a point P4 in the quadrant b a c',

instead of to p„ we should have, instead of stepping for-

wards from M, to step haehwards a distance m P4, and

then rotate this through a right angle counter-clock-

wise. The step backwards jvould be denoted by insert-

ing a — sign as a reversing operation (see p. 39), and

we should have

A P4 = A M — i . M P4.

Next let us see how we should get to a point like p^

in the quadrant c A b', where Pj is at a perpendicular

distance PjM' from ab'. First, we must take a step,

A m', backwards ; this is denoted by —am'; secondly,

we must step forwards from m' a distance m'p^; since

this step is forwards, it will be towards A ; thirdly, by
applying the operation i to this step, we rotate it about
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m' couuter-clockwise through a right angle, and so

reach Pj. Hence

A Pj = — A m' + i . m' Pj.

Finally, if we wish to reach P3 in the quadrant

b'a c', we must step backwards a m', and then still

further backwards a step h' Pj, and lastly rotate this

step counter-clockwise through a right angle. This

will be expressed by

A Pg = — A m' — !! . m' p„.

Now let us suppose Pp Pj, P3, P4, to be the four corners

of a rectangular figure whose centre is at a and whose

sides are parallel to b A b' and c a 0'. Let the number
of units in A M be x, and the number in M p, be y, then

we may represent the four steps which determine the

positions of the p's relative to A as follows :

—

A'P^ = X + ly
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If SB or y be negative, the corresponding forwards must

be read: Step forwards a negative quantity, that is,

step backwards. Thus :

—

Pj, or position in the quadrant B A C is determined by x, y.

Pj . . . . cab' • . — », 2/'

Pj . . . . b'ac' . . —x,—y.

P4 .... o'ab . . X, —y.

The quantities x and y are termed the Cartesian co-

ordinates of the point p, this method of determining the

Fig. 72.

position of a point having been first used by Descartes.

B A b' and c A c' are termed the co-ordinate axes of x

and y respectively, while A is called the origin of co-

ordinates. For example, let the Cartesian co-ordinates

of a point be (—3, 2). How shall we get at it from the

origin a ? If p be the point, we have ap= —S + i,2.

Hence we must step backwards 3 units ; from this point

step forwards 2 and rotate this step 2 about the ex-

tremity of the step 3 through a right angle counter-

clockwise ; we shall then be at the required point.

If p be determined by its Cartesian co-ordinates a?

and y, we might find a succession of points, p, by always
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taking a step y related in a certain invariable fashion to

any step x which has been previously made.

Such a succession of points p, obtained by giving

X every possible value, will form a line or curve, and

the relation between x and y is termed its Cartesian

equation.

As an instance of this, suppose that for every step

X, we take a step y equal to the double of it. Then we

shall have for our relation y = 2x, and our instructions

c

—1—I—1—I—I—p-i—I f I
'
I 1 'T'T"' i"i—

n

y

^1

_ ,/.

__ f. — — .^

1

i

_--^_ _II

qia: ::ii:i|i|::::::r

-^i

A.
_

Fio. 73.

to reach any point p of the series are x+ i.2x. Suppose

the quadrant bag divided into a number of little squares

by lines parallel to the axes, and let us take the sides of

these squares to be of unit length. Then if we take in

succession x=l, 2, 3, &c., we can easily mark off our

steps. Thus : 1 along A b and then 2 to the left ; 2

along A B and 4 to the left ; 3 along A b and then 6 to

the left ; 4 along a b and then 8 to the left ; 5 along

AB and then 10 to the left, and so on. It will be

obvious (by p. 106) that our points all lie upon a
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straight line througli A, and however many steps we

take along a b, followed by double steps perpendicular

to it, we shall always arrive at a point on the same

line. If we gave x negative values we should obtain

that part of the line which lies in the third quadrant

b'ac'. Hence we see that y = 2x is the equation to

a straight line which passes through a.

Let us take another example. Suppose that the

rectangle contained by y and a length of 2 units,

always contains as many units of area as there are

square units in x^. Our relation in this case may be

expressed by 2 1/ = x^, and we have the following series

of steps from a to points of the series :

—

2»1+i.l, 2+i.2, 3 + i.

4+ i.8, 5^-^.V, 6 + i.l8,&c.

We can by means of our little squares easily follow

out the operations above indicated ; we thus find a series

of points like those in the quadrant b A of the figure.

If however we had taken x equal to the negative

quantities —1, —2, —3, —4, —6, —6, &c., we should

have found precisely the same values for y, because we
haveseenthat (— a) x (—a)= a^ = ( + «) x ( + a). These

negative values for x give us a series of points like those

in the quadrant b' a of the figure. It is impossible

that any points of the series should lie below b a b',

because both negative and positive values for x give

when squared a positive value for the step y, so that no
possible iB-step would give a negative 2/-step. The series

of points obtaired in this fashion are found to lie upon
a curve which is one of those shadows of a circle Vv'hich

we have termed parabolas.

Hence we may say that 2y= x^ is the equation to a
parabola.
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This method of plotting out curves is of great value,

and is largely used in many branches of physical inves-

tigation. For example, if the differences of successive

SB-steps denote successive intervals of time, and y-steps

the corresponding heights of the column of mercury

in a barometer above some chosen mean position.

]
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generally registered automatically by means of a simple

pliotograpliic apparatus.

The plotting out of curves from their Cartesian

equations, usually termed curve tracing, forms an ex-

tremely interesting portion of pure mathematics. It

may be shown that any relation, which does not in-

volve higher powers of le and y than the second, is the

equation to some one of the forms taken by the shadow

of a circle.

§ 12. Of Complex Numbers,

We shall now return to our symbol of operation i,

and inquire a little closer into its meaning. Let the

point p be denoted as before by a m +i . m p, so that we

c
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to A M to the left through a distance, M q', equal to a p'.

Since however mq' = ap' = am:+ m:p=mp + pq', pq'

must be equal to a m and we can read our operation

AM: + i.(M:p + p q'),

which denotes two successive steps at right angles to

A M, namely m p followed by the step' p q'. Suppose now

we wished to rotate this latter step through a right angle

coanter-clockwise, we should have to introduce before

it the symbol i, and m p + i . p q' would signify the step

M p followed by the step p q at right angles to it to the

left. Now p q' is equal to A M, and hence the result of

this operation must bring us to Q, a point on a c which

might have been reached by the simple operation

+ i . A Q. Thus we may put

+ i . A Q, = AM + i . {m. p + i . T? q)

= am; + i.MP + i. i. pq;

or, since the quantities a q, am, m p, and p q here

merely denote numerical magnitudes, and since as such

A Q = M p and A M = p Q, we must have

= AM. + i . i . AM,
or — AM = i .i . AM.

Thus the operation i is of such a character that

repeated twice it is equivalent to a mere reversor, or, as

we may express it symbolically,

-1 = i\

This may be read in words : Turn a step counter-

clockwise through a right angle, and then again

counter-clockwise through another right angle, and we
have the same result as if we had reversed the step.

Now we have seen (p. 144) that if x be such a quantity

that multiplied by itself it equals a, x is termed the

square root of a, and written V*. Hence since

•i^rr: — 1, WO may write i=V - 1.
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This symbol is completely unintelligible so far as

quantity is- concerned; it can represent no quantity

conceivable, for the squares of all conceivable quantities

are positive quantities. For this reason V— 1 is some-

times termed an imaginary quantity. Treated however

as a symbol of operation V—l has a perfectly clear and

real meaning ; it is here an instruction to step forwards

a unit length and then rotate this length counter-clock-

wise through a right angle.
,

Any expression of the form x + v—l y is termed a

complex number.

Let p be any point determined by the step a p =
AM + V— Imp, and let r, x, y be the numerical values

of the lengths a p, am, and p m. It follows from the .

right-angled triangle p a m that r^ = x^ + y^. The

quantity r is then termed the modulus of the complex

number x + V— l y.

Further let the angle map contain 6 units of

angle; then

a FVL y /.AM X
sin.6 = — = -, cost' = — = -,

A p r A p r

or y = r sin^, x =r cos0.

The angle is termed the argument of the com-

plex number. Here r and 6 are the polar co-ordinates

of p, and we are thus able to connect them with the Car-

tesian co-ordinates ; they are respectively the modulus

and argument of the complex number which may be

formed from the Cartesian co-ordinates. Since r is

merely numerical we may write the complex number

X + V— ly in the form r . (cos^ -|- V—l sin^), or as

the product of its modi|Jus and the operator

C0s9 + V—l sin^,
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Hence wewliieh depends solely on its argument 6.

may interpret the step

A p = r . {cos6 + V— i sin^)

as obtained in the following fashion: Rotate unit length

from A B through an angle 6, and then stretch it in

the ratio of r ; 1. The latter part of this operation

will be signified by the modulus r, the former by the

operator (cos^ + V— 1 sin^). Thus if ad be of unit

length and lying in a b, w.e may read

—

A p = r , (cos5 + V— I smO) . a d,

and we look upon our complex number as a symbol

denoting the combination of two operations performed

on a unit step a d.

Starting then from the idea of a complex niiraber

as denoting position, we have been led to a new opera-

tion represented by the symbol cos0 + V— 1 sin^.

This is obviously a generalised form of our old symbol

V— 1. The operator cos9 + V— 1 sin^ applied to

any step bids us turn the step through an angle 6.

We shall see that this new conception has important

results.
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§ 13. On the Operation which turns a Step through a

given Angle.

Suppose we apply the operator (cos0 + V—1 sin^)

twice to a unit step. Then the symbolic expression

for this operation will be

(cos0 +V^ sin0) (cos0 +V—1 sin^),

or (cos^ + V— 1 sin^)^

But to turn a step first through an angle 6 and then

through another angle d is clearly the same operation

as turning it by one rotation through an angle 26, or

as applying the operator cos2^ +V— 1 sin2^. Hence

we are able to assert the equivalence of the operations

expressed by the equation

—

(cos0 + V^ sin^)"= cos2^ + V^ sin20.

In like manner the result of turning a step by n

operations through successive angles equal to must

be identical with the result of turning it at once

through an angle equal to n times 0, or we may write

(cos0 + V^ sin^)" = cosw^ + V^-l sinnd.

This important equivalence of operations was first ex-

pressed in the above symbolical form by De Moivre,

and it is usually called after him De Moivre's Theorem,

We are now able to consider the operation by means

of which a step A p can be transformed into another A Q.

"We must obviously turn a p about A counter-clockwise

till it coincides in position with a Q ; in this case P

will fall on p', so that a p' = a p. Then we must

stretch a p' into A Q ; this will be a process of multiply-

ing it by some quantity p, which is equal to the ratio

of A Q to A p'.
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Expressing this symbolically, if
<f)

be the angle

p A Q, we haye

(cos^ + V— 1 sin^) . A p = A p'.

p . (C0S(^ + V— 1 sitKJ)) .AP = /3.AP' = AQ.

This last equation we can interpret in various ways

:

(i) p. (cos^ + V—lsincj)) is a complex number of

which p is the modulus and <p the argument. Hence

we may say that to multiply a step by a complex number

is to turn the step through an angle equal to the argu-

ment and to alter its length by a stretch represented

by the modulus.

(ii) Or, again, we may consider the step A p as itself

representing a complex number, x +V—ly, or if r be

Fio. 77.

the scalar value of a p and the angle b A p, we may

put A p = r{cosd + V— 1 sin9). Similarly A Q will be a

complex number, and its scalar magnitude (= p. ap'

= pr) will be its modulus, while the angle b A q = d + (j)

will be its argument. We have then the following

identity

—

p (cos(/) +V— 1 sin0) . r (cos^ +V— I sin5) =
pr. {cos6 + <ji+V—l cos<j) + 0).

This may be read in two ways

:

First, the product of two complex numbers is itself

a complex number, and has the product of the moduli
for its modulus, the sum of the arguments for its

argument.
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Or secondly, if we turn unit step tlirough an

angle 6 and give a stretch r, and then turn the result

obtained through an angle ^ and give it a stretch, p,

the result will be the same as turning unit step through

an angle + <}> and giving it a stretch equal to p r.

Thus we see that any relation between complex

numbers may be treated either as an algebraical fact

relating to such numbers, or as a theorem concerning

operations of turning and stretching unit steps.

(iii) We may consider what answer the above identity

gives to the question : What is the ratio of two

directed steps A Q and a p ? Or, using the notation sug-

gested on p. 45, we ask : What is the meaning of the

symbol .—^ ? A step like a p (or A q) which has

magnitude, direction, and sense is, as we have noted,

termed a vector. We therefore ask: What is the ratio

of two vectors, or what operation will convert one

into the other ? The answer is : An operation which

is the product of a turning (or spin) and a stretch.

Now the stretch is a scalar quantity, a numerical

ratio by which the scalar magnitude of a p is con-

nected with that of aq. The stretch therefore is a

scalar operation. Further, the turning or spin converts

the direction of A p into that of A Q, and it obviously

takes place by spinning a p round an axis perpendi-

cular to the plane of the paper in which both ap
and AQ lie. Thus the second part of the operation

by which we convert A p into A q denotes a spin

(counter-clockwise) through a definite angle about a

certain axis. The amount of the spin might be

measured by a step taken along that axis. Thus, for

instance, if the spin were through 6 units of angle,

we might measure 6 units of length along the axis to
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denote its amount. We may also agree to take this

length along one direction of the axis ('out from the

face of the clock ') if the.spin be counter-clockwise, and
in the opposite direction (' behind the face of the clock

')

if the spin be clockwise. Thus we see that our spinning

operation may be denoted by a line or step having

magnitude, direction, and sense ; that is, by a vector.

We are now able to understand the nature of the ratio

of two vectors; it is an operation consisting of the pro-

duct of a scalar and a vector. This product was termed

by Sir William Hamilton a quaternion, and made the

foundation of a very powerful calculus.

Thus a quaternion is primarily the operation which

converts one vector step into another. It does this by
means of a spin and a stretch. If we have three points

in plane space, the reader will now understand how
the position of the third with regard to the first can be
made identical with that of the second by means of a

spin and a stretch of the step joining the first to the

third, that is, by means of a quaternion.'

§ 14. Relation of the Spin to the Logarithmic Growth

of Unit Step.

Let us take a circle of unit radius and endeavour

to find how its radius grows in describing unit angle

about the centre. Hitherto we have treated of growth

only in the direction of length ; and hence it might be

supposed that the radius of a circle does not * grow ' at

all as it revolves about the centre. But our method of

adding vector steps suggests at once an obvious extension

of our conception of growth. Let a step A p become

• The term 'stretch' must be considered to include a squeeze or a

stretch denoted by a scalar quantity p less than unity.
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A Q as it rotates about a througli the angle p A Q, tlien

if we marked off 1 q a distance A p' equal to A p, p' q

would be the scalar growth of A p ; that is, its growth

FiQ. 78.

in the direction of its length. But if A p be treated

as a vector: (see p. 153)

AQ = AP + PQ,

or the directed step p q must be added to A p in order to

convert it into a q ; p q may be thus termed the directed

growth of A p. If we join p p', we shall have p Q equal

to the sum of p p' and p' q. Now if the angle pap' be

taken very small p p' will be ultimately perpendicular

to AP, and this part of the growth pq might be

represented by V— 1. pp'. Hence we are led to

represent a growth perpendicular to a rotating line by

a scalar quantity multiplied by the symbol a/— 1.

We can now consider the case of our circle of unit

radius. Let o p be a radius which has revolved through

Fis. 79.

an angle 6 from a fixed radius o A, and let o Q be an

adjacent position of p such that the angle Q o p is very

small. Then p q will be a small arc sensibly coincident
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•witli tlie straight line p q, and the line p q will be to all

intents and purposes at right angles to o p. Hence to

obtain o Q we must take a step p q at right angles to

OP. This we represent hjV—1 qp. Siuoe the radius

of the circle is unity the arc qp, which equals the

ra,dius multiplied by the angle Q o p (see p. 143), must

equal the numerical value of the angle q o p. Or the

growth of p is given by V - 1 x angle Q o p. Now
according to our definition of growing at logarithmic

rate (seep. 176), since op is equally multiplied in de-

scribing equal angles about o, it must be growing at

logarithmic rate. What is this logarithmic rate for

unit angle ?

It must equal —^ divided by the ratio of the angle

P Q /

—

Q p to unit angle = j = v — 1 since o p^ *= OP X angleQOP

is unity. Thus o p is growing at logarithmic rateV—

1

as it describes unit angle ; that is to say, the result of

turning OP through unit angle might be symbolically

expressed by e'*'—^. Hence the result of turning op
through an angle 6 must be e'^—^^. We may then write

OP = OA .e'^-'^.

Drop p M perpendicular to o a and produce it to meet
the circle again in p', then by symmetry m p=ii p', and
we have

OP = OM + V— Im p.

op' = OM — V— 1 MP'.

Now since o p and o p' are of unit magnitude,

. OM . . PM
cosy =— = M, smO = — = p M.

Also the angle p'om equals the angle mop, but, according

0-A (^'"^^ vri ^f-i f^]P
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to our convention as to the measurement of angles,

it is of opposite sense, or equals — 6. Thus we must

write

p' = A . e-'^-i^

Substituting their values, we deduce the symbolical

results

e-V=:,e ^ cosl^-V^ sin^P^^

Further,

o p — p' = 2V—1pm
o p + o p' = 2 M

;

that is.

e
V-i9 _ e-^-ie = 2V-I sin^l ^...

e^-i9 + e-^=i0=2cos5 y'
These values for cos5 and sin^ in terms of the ex-

ponential e were first discovered by Euler. They are

meaningless in the form (ii) when cos^ and sin5 are

interpreted as mere numerical ratios ; but they have a

perfectly clear and definite meaning when we treat

each side of the equation in form (i) as a symbol of

operation. Thus cos^ + V— 1 sin^ applied to unit

step directs us to turn that step without altering its

length through an angle 6 ; on the other hand, e
'^~^^

applied to the same step causes it to grow at logarith-

mic rate unity 'perpendicular to itself, while it is turned

through the angle 6. The two processes give the same

result.

§ 15. On the Multiplication, of Vectors.

We have discussed how vector steps are to be

added, and proved that the order of addition is in-

dififerent ; we have also examined the operation denoted
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by the ratio of two vectors. The reader will naturally

ask : Can no meaning be given to the product of two

vectors ?

If both the vectors he treated as complex numbers,

or as denoting operations, we have interpreted their

product (see p. 193) as another complex number or as a

resultant operation. Or again we have interpreted

the product of two vectors when one denotes an ope-

ration and the other a step of position ; the product

in this case is a direction to spin the step through a

certain angle and then stretch it in a certain ratio.

But neither of these cases explains what we are to

understand by the product of two steps of position.

Let A p, A Q be two such steps : What is the meaning

of the product ap.aq? Were ap and aq merely

ip

Fio. 80.

scalar quantities then their product would be purely

scalar, and we should have no diflSculty in interpreting

the result A p . p q as another scalar quantity. But
when we consider the steps A p, p Q to possess not only

Q n

A ^ »
FiQ. 81.

magnitude but direction, the meaning of their product
is by no means so obvious.

If A Q were at right angles to A p (see fig. 81), we
should naturally interpret the product ap.aq as the

10
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area of the rectangle on a q and A p, or as the area of

the figure Q A p e. Now let us see how this area might

be generated. Were we to move the step A Q parallel

to itself and so that its end a always remained in the

step A p, it would describe the rectangle Q A p e while its

foot A described the step A p. Hence if A p and a q are

at right angles we might interpret their product as

follows

:

The product A p . A Q bids us move the step a q

parallel to itself so that its end A traverses the step a p
;

the area traced out by A Q during this motion is the

value of the product a p . aq.

It will be noted at once that this interpretation,

although suggested by the case of the angle Q A p being

a right angle, is entirely independent of what that angle

may be. If Q A p be not a right angle the area traced

out according to the above rule would be the parallelo-

gram on A p, A Q as sides. Hence the interpretation we

have discovered for the product A p . A Q gives us an

intelligible meaning, whatever be the angle Q A p.

There is, however, a difiSculty which we have not yet

solved. An area is a directed quantity (see p. 134), and

its direction depends on how we go round its perimeter.

Now the area q a p u will be positive if we go round its

perimeter counter-clockwise, or from a to p ; that is, in

Af^

Q, _ K

Fig. 82,

the direction of the first step of the product or in the

direction of motion of the second or moving step. Thus
the product A p . A q will be the area Q A p e taken with
the sign suggested by the step a p. The product a q. ap
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will be formed by causing the step A p to move

parallel to itself along a q, and it is therefore also the

area of the parallelogram on A Q and a p ; but it is to be

taken with the sign suggested by a q, or it is the area

PAQE.

By our convention as to the sign of areas,

PAQB = — QAPE,
or AQ.AP=— AP.AQ,

Hence we see that, with the above interpretation, the

product of two vectors does not follow the commutative

law (see p. 45).

If we suppose the angle Q A p to vanish, and the

vector A Q to become identical with a p, the area of

the enclosed parallelogram will obviously vanish also.

Thus, if a vector step be multiplied by itself, the product

is zero ; that is,

AP. AP = (ap)^ = 0.

If we take a series of vector steps, a, y3, 7, 8, &c.

then relations of the following types will- hold among
them:

a\ =0, ^62 = 0, 72 ^0, B^ = 0, &c.

a^ = - ^a, ay = - ja, fiy = — 7^,
By = — y 8, &c.

A series of quantities for which these relations hold

was first niade use of by Grassmann, and termed by

him alternate units.

The reader will at once observe that alternate units

have an algebra of their own. They dispense with

the commutative law, or rather replace it by another

in which the sign of a product is made to alternate with

the alternation of its components. Their consideration

will suggest to the reader that the rules of arithmetic.
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which he is perhaps accustomed to assume as neces-

sarily true for all forms of symbolic quantity, have only

the comparatively small field of application to scalar

magnitudes. It becomes necessary to consider them as

mere conventions, or even to lay them aside entirely as

we proceed step by step to enlarge the meaning of the

symbols we are employing.

Although 2 X 2=0 and 2 x 3= —3 x 2 may be sheer

nonsense when 2 and 3 are treated as mere numbers, it

yet becomes downright common sense when 2 and 3 are

treated as directed steps in a plane.

Let us take two alternate units a, y8 and interpret

the quantity aa + 6 /S, where a and h are merely scalar

Fio. 83.

magnitudes. If o A be the vector a, a a signifies that

we are to stretch o A to o a' in the ratio of 1 to a. To
this o a' we are to add the vector o b' derived from o b

by giving it the stretch h. Hence if a' p = o b' the

vector o p represents the quantity a a + h ^, which is

termed an alternate number. Let o Q represent a second

alternate number a' a -\- b' ^, obtained by adding the

results pf applying two other stretches a' and V to the
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alternate units a and ;S. In the same way we might

obtain, by adding the results of stretching three alternate

units {a, /3, 7) , alternate numbers with three terms (of the

form aa + fe/3 + c7), and so on. If we take the pro-

duct of as many alternate numbers as we have used

alternate units in their composition, we obtain a

quantity called a determinant, which plays a great part

in the modern theory of quantity. We shall confine

ourselves here to the consideration of a determinant

formed from two alternate units. Such a determinant

will be represented by the product o p . o Q, which

according to our convention as to the multiplication of

vectors equals the area of the parallelogram on p,

6q as sides, or (by p. 122) twice the triangle qop.

Through Q draw c Q a" parallel to b, and d q b"

parallel to A, then o a" = a' a and b" = 6' y3. Join

b' q, then twice the triangle b'q p equals the parallelo-

gram b" p. Hence, adding to both these the parallelo-

gram a' b" we have the parallelogram a' b" together

with twice the triangle b'q p equal to the parallelogram

b'a', or to twice the triangle b'op. But the triangle

b'o p equals the sum of the triangles o Q b', b'q p, and

OPQ. It follows then that the parallelogram a'b"

must equal tvrice the triangle p Q together with twice

the triangle o Q b'. Now twice the latter equals b' a".

Hence the difference of the parallelograms a' b" and
b' a" is equal to twice p q. The parallelogram a' b"

is obtained from the parallelogram a b by giving it two

stretches a and V parallel to its sides, and therefore its

area equals a V times the area a b. Similarly b' a"

equals h a' times the area A b ; but the area A B itself is

a^. Thus we see that the identity

P . o'^Q = a' b" — b' a"
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may be read

{aa + 6y3) (a'o + h' ^) = {aV - I a') a^.

Or, the determinant is equal to tlie parallelogram on

the alternate units magnified in the ratio of 1 to

ab' — h a'. It obviously vanishes it ah' —ha' = 0, or if

ajb = a'jV. Iq this case p and q lie, by the property of

similar triangles, on the same straight line through o,

and therefore, as we should expect, the determinant

p . o Q is zero.

The reader will find little diflBculty in discovering

like properties for a determinant formed from three

alternate units. In this case there will be a geometrical

relation between certain volumes, which may be ob-

tained by stretches in the manner explained on p. 139.'

We have in this section arrived at a legitimate

interpretation of the product of two directed steps or

vectors. We find that their product is an area^ or ac-

cording to our previous convention (see p. 134), also a

directed step or vector whose direction is perpendicular

to the plane which contains both steps of the product*

§ 16. Another Interpretation of the Product of Two
Vectors.

The reader must remember, however, that the result

of the preceding paragraph has only been obtained hy

means of a convention ; namely, by adopting the area of a

certain parallelogram as the interpretation of the vector

' I have to thank my friend Mr. J. Eose-Innes for euggesting the intro-

duction of thfi above remarks as to determinants. I may, perliaps. be

allowed to add that by treating the alternate tnits, like Giassmann, as

points, and the alternate number as their loaded centroid, a determinant

of the second order is represented geometrically by a length, and we thus

obtain for one of the fourth order a geometrical interpretation as a volume.
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product. Only as long as we observe that convention

will our deductions with regard to the multiplication of

vectors be true. We might have adopted a different

convention, and should then have come to a different

result. It will be instructive to follow out the results

of adopting another convention, if only by so doing we

can impress the reader with the fact that the. funda-

mental axioms of any branch of exact science are based

rather upon conventions than upon universal truths.

Suppose then that in interpreting the product

A p . A Q we consider A p to be a directed step which

IB'

Fig. 84.

represents the area D b f G. This area will be perpen-

dicular to the direction of A p, and we might assume as

our convention that the product A p . a q shall mean the

volume traced out by the step A Q, moving parallel to

itself and in such wise that its end A takes up every

possible position in the plane d e p G. This volume will

be the portion of an oblique cylinder on the base d b p G

intercepted by a plane parallel to that base through q.

We have seen (p. 141) that the volume of this cylinder

is the product of its base into its height, viz. the per-

pendicular distance a h between the two planes. Now
let r and p be the scalar magnitudes of A p and a q
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respectively, and 6 = the angle paq. Then ah =
p cos5, and the volume = ap.aq = rp cos^, for r re-

presents the number of units of area in d B p G. Hence,

since a volume is a purely numerical quantity having

only magnitude and no direction, we find that with this

new convention the product of two vectors is a purely

scalar quantity, or our new convention leads to a totally

different result from the old.

Further, since r and p are merely numbers, rp=p r,

and thus ap.aq = rpcosO — pr cosd = aq.ap, if

A Q be treated as the directed step which represents

an area containing p units of area. Thus in this case

the vector product obeys the commutative law, which

again differs from our previous result. We can then

treat the product of two vectors either as a vector and

as a quantity not obeying the commutative law, or as a

scalar and as a quantity obeying the commutative law.

We are at liberty' to adopt either convention, provided

we maintain it consistently in our resulting investiga-

tions.

The method of varying our interpretation, which has

been exemplified in the case of the product of two
vectors, is peculiarly fruitful in the field of the exact

sciences. Each new interpretation may lead us to vary

our fundamental laws, and upon those varied funda^

mental laws we can build up a new calculus (algebraic

or geometric as the case may be). The results of our

new calculus will then be necessarily true for those

quantities only for which we formulated our funda-

mental laws. Thus those laws which were formulated

for pure number, and which, like the postulates of

Euclid with regard to space, have been frequently

supposed to be the only conceivable basis for a theory
of quantity, are found to be true only within the limits
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of scalar magnitude. When we extend our conception

of quantity and endow it with direction and position,

we find those laws are no longer valid. We are com-

pelled to suppose that one or more of those laws cease

to hold or are replaced by others of a different form.

In each case we vary the old form or adopt a new one

to suit the wider interpretation we are giving to quan-

tity or its symbols.

§ 17. Position in Three-Dimensioned Space.

Hitherto we have been considering only position in

a plane ; very little alteration will enable us to consider

the position of a point p relative to a point A as deter-

mined by a step A p taken in space.

We may first remark, however, that while two points

A and B are sufficient to determine in a plane the position

of any third point p, we shall require, in order to fix the

position of a point p in space, to be given three points

A, B, c not lying in one straight line. If we knew only

the distances of p from two points A and b, the point

p might be anywhere on a certain circle which has its

centre on the line ab and its plane perpendicular to

that line ; to determine the position of p on this circle,

we require to know its distance from a third point c.

Thus position in space requires us to have at least

three non-collinear points (or such geometrical figures

as are their equivalent) as basis for our determination

of position. Space in which we live is termed space of

three dimensions ; it differs from space of two dimen-

sions in requiring us to have three and not two points

as a basis for determining position.

Three points will fix a plane, and hence if we are

given three points a, b, o in space, the plane through
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them will be a definite plane separating all space into

two halves. In one of these any point p whose position

we require must lie. We may term one of these halves

below the plane and the other above the plane. Let p n

be the perpendicular from p upon the plane ; then if

we know how to find the point n in the plane A b c,-the

position of p will be fully determined so soon as we

have settled whether the distance p n is to be measured

above or below the plane. "We may settle by convention

that all distances above the plane shall, be considered

positive, and all below negative. Further, the position

of the point n, upon which that of p, depends, may be

M

Fig. 85.

determined by any of the methods we have employed

to fix position in a plane. Thus if N M be drawn

perpendicular to a b, we have the following instruction

to find the position of p : Take a step a m along A b,

containing, say, x units ; then take a step M N to the right

I

and perpendicular to A B, but still in its plane, contain-

ing, say, y units ; finally step upwards from N the distance

N p perpendicular to the plane A b c, say, through ^ units.

We shall then have reached the same point p as if we

had taken the directed step A p. If a; had been negative

we should have had to step backwards from a; ii y had

been negative, perpendicular to a b only to the left ; if

z had been negative, perpendicular to the plane but
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downwards. The reader -will easily convince himself

that by observing these rules as to the sign of x, y, z

he could get from a to any point in space.

Let i denote unit step along A b, j unit step to the

right perpendicular to A b, but in the plane a b c, and

h unit step perpendicular to the plane a b c upwards,

from foot to head. Then we may write

xv = X . i + y .j + z .Tc,

where x, y, z are scalar quantities possessing only

magnitude and sign ; but *, 3, Jt are vector steps in

three mutually rectangular directions.
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finish of the last ; and thus a number of propositions

concerning steps in space similar to those we hare

proved for steps in a plane may be deduced. By
dividing all space into little cubes by three systems of

planes mutually at right angles, yve may plot out sur-

faces just as we plotted out curves. Thus we shall choose

any values we please for x and y, and suppose the

magnitude of the third step related in some constant

fashion to the previous steps. For example, if we take

the rectangle under » and some constant length a,

always equal to the differences of the squares on x and

y, or symbolically if we take a a = x^—y^, we shall

reach p by taking the step

AF = x.i + y .j + i-

,

h.
a

The series of points which we should obtain in this

way would be found to lie upon a surface resembling

the saddle-back we have described on p. 89. The
above relation between 2, x, and y will then be termed

the equation to a saddle-back surface.

We cannot, however, enter fully on the theory of

steps in space without far exceeding the limits of our

present enterprise.

§ 18. On Localised Vectors or Rotors.

Hitherto we have considered the position of a point

p relative to a point a, and compared it with the

position of another point q relative to the same point

A. Thus we have considered the ratio and product of

two steps A p and a q.

We have thereby assumed either that the two steps

we were considering had a common extremity a, or at

least were capable of being moved parallel to themselves
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till they had such a common extremity. Such steps are,

as we have remarked, termed vector steps.

Suppose, however, that instead of comparing the

position of two points p and q relative to the same

point A, we compared their positions relative to two

different points A and B. The position of p relative to

A will then be determined by the step ap and the

position of Q relative to b by the step b q.

Now it will be noted that these steps a p and b q have

not only direction and magnitude, bat have themselves

position in space. The step A p has itself position in

space relative to the step b q. It is no longer a step

Fio. 87.

merely indicating the position of p with regard to A,

but taken as a whole it has itself attained position

when considered with regard to the step b q. This

localising, not of a point p relative to a point a, but

of a step A p with regard to another step b q, is a new
and important conception. Such a localised vector is

termed a rotor from the part it plays in the theory of

rotating or spinning bodies.

Let us try and discover what operation will convert

the rotor b q into the rotor A p ; in other words : What
A P I

is the operation , ' ? In order to convert B Q into^
1
BQ
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A p we must mate the magnitude and position of b Q

the same as that of A p. Its magnitude may he made

the same hy means of a stretching operation which

stretches b Q to a p. This stretch, as we have seen in the

case of a quaternion (see p. 195), may he represented

hy a numerical ratio or a mere scalar quantity. Next

let c D he the shortest distance hetween the rotors A p

/

-<i

Fig. 88.

and B Q; then D will he perpendicular to both of them.'

B Q may then be made to coincide in position with A p

by the following process

:

First turn B Q about the shortest distance, c D,

through some angle, Q d q', till it takes up the posi-

tion b'q' parallel to A P ; then slide b'q' along the

' That the shortest distance hetween two lines is perpendicular to hoth

of them may he proved in the following manner. Let us suppose the lines

replaced by perfectly smooth and very thin rods, and let two rings, one on

either rod, be connected by a stretched elastic string. Obviously the rings

will slide along the rods till the elastic string takes up the position of the

shortest distance ; for that will correspond to the least possible tension of

the string. Suppose that the string is then not at right angles to one of

the rods, say, at the point c. By holding the string firmly at E, we might

shift the ring at c along the rod to c', so that the angle b c'c should be a

right angle. Then since c' is a right angle c e would be greater than o'e,

being the side opposite the greatest angle of the triangle E c' c. Hence the

length of string c' E + e D is less than the length c n, or c D cannot be the

shortest distance which we have supposed it to be. Thus the shortest

distance must be at right angles to both lines.
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shortest distance parallel to itself till its position coin-

cides with A p. If we wished b'q' to coincide point for

point with A p', we should further have to slide it along

A p till b' and a were one.

Now the two operations of turning a line about

another line at right angles to it, and moving it along

that line, are just akin to the operations which are

applied to the groove in the head of a screw when we
drive the screw into a block of wood ; or again to the

handle of a corkscrew when we twist the screw into a

cork. The handle in the one case and the groove in the

other not only spin round, but go forward in the direc-

tion of the screw axis. Such a movement along an

axis, and at the same time about it, is termed a twist. The
ratio of the forward space described to the angle turned,

through during its description by the head of the screw

is termed the pitch of the screw. This pitch will

remain constant for all forward spaces described if the

thread of the screw be uniform. Thus turn an ordinary

corkscrew twice round, and it will have advanced twice

as far through the cork as when it has been turned

only once round. Let us see whether we cannot apply

this conception of a screw to the operations by which we
bring the rotor b q into the position of the rotor a p.

Upon a rod placed at c d, the shortest distance, suppose a
fine screw cut with such a thread that its pitch equals

the ratio of o d to the angle Q d q'. Then if we suppose

B Q attached to a nut upon this screw at d, when we
turn B Q through the angle Q d q', the nut with b q will

advance (owing to the pitch we have chosen for the

screw) through the distance d c. In other words, e q
will have been brought up to a p and coincide with it

in position and direction.

Hence the operations by means of which b q can be
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made to coincide with A v are a stretcli followed by a

twist along a certain screw. A screw involves direc-

tion, position, and pitch; a twist (as of a nut) about

this axis involves something additional, namely a

magnitude, viz. that of the angle through which the

nut is to be turned. Magnitude associated with a

screw has been termed by the author of the present

book a motor '^ (since it expresses the most general

instantaneous motion of a rigid body). Hence the

operation by which one rotor is converted into another

may be described as a motor combined with a stretch.

This operation stands in the same relation to two rotors

as the quaternion to two vectors. The motor plays

such an important part in several branches of physical

inquiry that the reader will do well to familiarise him-

self with the conception.

The sum of two vector steps is, as we have seen

(p. 153), a third vector ; but unlike vector steps the sum
of two rotors is in general a motor; only in special

cases does it become either a rotor or a vector. The
geometry of rotors and motors, which we have only

here been able to hint at, forms the basis of the whole

modern theory of the relative rest (Static) and the rela-

tive motion (Kinematic and Kinetic) of invariable

systems.

§ 19. On the Bending of Space.

The peculiar topic of this chapter has been position,

position namely of a point p relative to a point a.

This relative position led naturally to a consideration of

the geometry of steps. I proceeded on the hypothesis

' 'Preliminary Sketch of Biquaternions,' Proceediiiga of the London
Mathematical Society, vol. ir. p. 383.
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that all position is relative, and therefore to be deter-

mined only by a stepping process. The relativity of

position was a postulite deduced from the customary

methods of determining position, such methods in fact

always giving relative position. Relativity ofposition

is thus a postulate derived from experience. The late

Professor Clerk-Maxwell fuUy expressed the weight of

this postulate in the following words ;

—

AH our knowledge, both of time and place, is relative.

When a man has acquired the habit of putting words together,

without troubUng himself to form the thoughts which ought to

correspond to them, it is easy for him to frame an antithesis

between this relative knowledge and a so-called absolute know-

ledge, and to point out om- ignorance of the absolute position of

a point as an instance of the limitation of our faculties. Any
one, however, who will try to imagine the state of a mind con-

scious of knowing the absolute position of a point will ever after

be content with our relative knowledge.'

It is of snch great value to ascertain how far we can

he certain of the truth of our postulates in the exact

sciences ihat I shall ask the reader to return to our

conception of position albeit from a somewhat different

standpoint. I shall even ask him to attempt an exami-

nation of that state of mind which Professor Clerk-

Maxwell hinted at in his last sentence.

Suppose we had a tube of exceedingly small bore

bent into a circular shape, and within this tube aworm
of length AB. Then in the limiting case when we
make the bore of the tube and the worm infinitely fine,

we shall be considering space of one dimension. For

so soon as we have fixed one point, c, on the tube, the

length of arc c a suffices to determine the position of

the worm. Assuming that the worm is incapable of

' Matter and Motion, p. 20.
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recognising anything outside its own tube-space, it

would still be able to draw certain inferences as to the

nature of the space in which it Histed were it capable

of distinguishing some mark o on the side of its tube.

Thus it would notice when it returned to the point c,

and it would find that this return would continually

recur as it went round in the bore ; in other words, the

worm would readily postulate the finiteness of space.

Further, since the worm would always have the same
amount of bending, since all parts of a circle are of the

same shape, it might naturally assume the sameness of

i'lo. 89.

all space, or that space possessed the same properties at

all points. This assumption is precisely akin to the one
we make when we assert that the postulates of Euclidian

geometry, which, experience teaches us, are practically

true for the space immediately about us, are also true

for all space ; we assume the sameness of our three-
dimensioned space. The worm would, however, have
better reason for its postulate than we have, because it

would have visited every part of its own one-dimen-
sioned space.

Besides the finiteness and sameness of its space the
worm might assert the relativity of position, and deter-
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mine its position by the length of the arc between o

and A. Let us now make a variation in our problem

and suppose the wori# incapable either of making or

of recognising any mark on the tube. Then it would

clearly be impossible for the worm to ascertain whether

its space were limited or not; it would never know

when it had made a complete revolution in its tube. In

fact, since the worm would always possess the same

amount of bending, it would naturally associate that

lending with its physical constitution, and not with the

space which it was traversing. It might thus very

reasonably suppose its space was infinite, or that it was

moving in an infinitely long tube. If the worm thus

associated bending with its physical condition it would

find no difference between' motion in space of constant

bend (a circle) and motion in what is termed homaloidal

or fiat space (a straight line) ; if suddenly transferred

from one to the other it would attribute the feeling

arising from difference of bending to some change

which had taken place in its physical constitution.

Hence in one-dimensioned space of constant bend all

position is necessarily relative, and the finite or in-

finite character of space will be postulated according as

it is possible or not to fix a point in it.'

Let us now suppose our worm moving in a different

sort of tube ; for example, that shadow of a circle we
have called an ellipse. In such a tube the degree of

bending is not everywhere the same ; the worm as it

passes from the place of least bending c to the place of

most bending d, will pass through a succession of bond-

ings, and each point h between c and d will have its

' This supposes the one-dimensioned space of constant bend to lie in a

plane ; the argument does not apply to space like that of a helix (or the

form of a corkscrew), which is of constant bend, bat yet not finite.
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own degree of bending. Hence there is something,

quite apart from the position of h relative to c which

characterises the point h ; namety, associated with h is

a particular degree of bending, and the position of the

point H in c D is at once fixed if we know the degree of

bending there. Thus the worm might determine abso-

lute position in its space by the degree of bending asso-

ciated with its position. The worm is now able to

appreciate differences of bend, and might even form a

scale of bending rising by equal differences. The zero

of such scale might be anywhere the worm pleased, and

degrees of greater and less bend might be measured as

positive and negative quantities from that zero. This

zero might in fact be purely imaginary ; that is, represent

a degree of bending non-existent in the worm's space

;

for example, in the case of an ellipse, absolute straight-

ness, a conception which -the worm might form as a

limit to its experience of degrees of bend.* Thus it

would seem that in space of ' varying bend,' or space

which is not same, position is not necessarily relative.

The relativity has ceased to belong to position in space;

it has been transferred to the scale of bending formed

' Physicists may be reminded of the absolute zero of temperature.
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by the worm ; it has become a relativity ofphysical feel-

ing. In the case of an elliptic tube there are owing to

its symmetry four points of equal bend, as H, e, f, and

G, but there is the following distinction between h, f

and E, G. If the worm be going round in the direction

indicated by the letters o h D e, at H or F it will be pass-

ing from positions of less to positions of greater bending,

but at B or G from positions of greater to positions

of less bending. Thus the worm might easily draw a

distinction between h, f and E, G. It would only be

liable to suppose the points h and f identical because

Fig. 91.

they possess the same degree of bending. We might

remove even this possible doubt by supposing the worm
to be moving in a pear-shaped tube, as in the accom-

panying figure ; then there will only be two points of

equal bend, like H and g, which are readily distinguished

in the manner mentioned above.

We might thus conclude that in one-dimensioned

space of variable bend position is not necessarily

relative. There is, however, one point to be notedwith

regard to this statement. We have assumed that the

worm will associate change of bending with change of

position in its space, but the worm would be sensible of
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it as a change of physical state or as a change of feeling;

Hence the worm might very readily be led into the

error of postulating the sameness of its space, and

attributing all the changes in its bend, really due to its

position in space, to some periodic (if it moves uniformly

round its tube) or irregular (if it moves in any fashion

backwards and forwards) changes to which its physical

constitution was subject. Similar results might also

arise if the worm were either moving in space of the

same bend, which bend could be changed by some ex-

ternal agency as a whole, or if again its space were of

varying bend, which was also capable of changing in

any fashion with time. The reader can picture these

cases by supposing the tube made of flexible material.

The worm might either attribute change in its degree

of bend to change in the character of its space or to

change in its physical condition not arising from its

position in space. We conclude that the postulate of

the relativity of position is not necessarily true for one-

dimensioned space of varying bend.

When we proceed from one to two-dimensioned

space, we obtain results of an exactly similar character.

If we take perfectly even (so called homaloidal) space of

two dimensions, that is, a plane, then a perfectly flat

figure can be moved about anywhere in it without

altering its shape. If by analogy to an infinitely thin

worm we take an infinitely thin flat-fish, this fish

would be incapable of determining position could it

leave no landmarks in its plane space. So soon as it

had fixed two points in its plane it would be able to

determine relative position.

Now, suppose that instead of taking this homaloidal

space of two dimensions we were still to take a perfectly

same space but one of finite bend, that is, the surface



POSITION. 221

of a sphere. Then let us so stretch and bend our flat-

fish that it would fit on to some part of the sphere.

Since the surface of the sphere is everywhere space of

the same shape, the fish would then be capable of

moving about on the surface without in any way alter-

ing the amount of tending and stretching which we

had found it necessary to apply to make the fish fit in

any one position. Were the fish incapable of leaving

landmarks on the surface of the sphere, it would be

totally unable to determine position ; if it could leave

at least two landmarks it would be able to determine

relative position. Just as the worm in the circular tube,

the fish without landmarks might reasonably suppose

its space infinite, or even look upon it as perfectly flat

(homaloidal) and attribute the constant degree of bend

and stretch to its physical nature.

Let us now pass to some space of two dimensions

which is not same—to some space, for example, like the

saddle-back surface we have considered on page 89,

which has a varying bend. In this case the fish, if it

fitted at one part of the surface, would not necessarily

fit at another. If it moved about in its space, it would
be needful that a continual process of bending and
stretching should be carried on. Thus every part of

this two-dimensioned space would be defined by the
particular amount of bend and stretch necessary to

make the fish fit it, or, as it is usually termed, by the
curvature. In surfaces with some degree of symmetry
there would necessarily be parts of equal curvature, and
in some cases the fish might perhaps distinguish

between these points in the same fashion as the worm
distinguished between points of equal curvature in the
case of an elliptic tube. In irregular surfaces, however,
it is not necessary that such points of equal curvature
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should arise. We are thus led to conclusions like those

we have formed for one-dimensioned space, namely:

Position in space of two dimensions which is not same

might he determined absolutely by means of .the curva-

ture. Our fish has only to carry about with it a scale

of degi'ees of bending and sti'etching corresponding to

various positions on the surface in order to determine

absolutely its position in its space. On the other hand,

the fish might very readily attribute all these changes

of bend and stretch to variations of its physical nature

in nowise dependent on its position in space. Thus it

might believe itself to have a most varied physical life,

a continual change of physical feeling quite indepen-

dent of the geometrical character of the space in which

it dwelt. It might suppose that space to be perfectly

same, or even degrade it to the * dreary infinity of a

homaloid.' •

As a result, then, of our consideration of one and two-

dimensioned space we find that, if these spaces be not

same {a fortiori mt homaloidal), we should by reason

of their curvature have a means of determining absolute

position. But we see also that a being existing in

these dimensions would most probably attribute the

effects of curvature to changes in its own physical

condition in nowise connected with the geometrical

character of its space.

What lesson may we learn by analogy for the three-

dimensioned space in which we ourselves exist? To
begin with, we assume that all our space is perfectly

same, or that solid figures do not change their shape in

passing from one position in it to another. We base this

postulate of sameness upon the results of observation

' In this case of two-dimensioned space assume it to be a plane. Cf.

Cliiford's Lectures and Essays, vol. i. p. 323.
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in that somewhat limited portion of space of which

we are cognisant.' Supposing our observations to

be correct, it by no means follows that because the

portion of space of which we are cognisant is for

practical purposes same, that therefore all space is

same.* Such an assumption is a mere dogmatic ex-

tension to the unknown of a postulate, which may
perhaps be true for the space upon which we can ex*

periment. To make such dogmatic assertions with

regard to the unknown is rather characteristic of the

mediseval theologian than of the modem scientist. On
the like basis with this postulate as to the sameness

of our space stands the further assumption that it is

homaloidal. When we assert that our space is every-

where same, we suppose it of constant curva.ture (like

the circle as one and the sphere as two-dimensioned

space) ; when we suppose it homaloidal we assume that

this curvature is zero (like the line as one and the

plane as two-dimensioned space). This assumption

appears in our geometry under the form that two
parallel planes, or two parallel lines in the same plane

—

' It may te held ty some that the postulate of the sameness of our

space is based upon the fact that no one has hitherto been able to form any
geometrical conception of space-curvature. Apart from the fact that man-
kind habitually assumes many things of -which it can form no geometrical

conception (mathematicians the circular points at infinity, theologians

transubstantiation), I may remark that we cannot expect any being to

form a geometrical conception of the curvature of his space till he views it

from space of a higher dimension, that is, practically, never.

- Yet it must be noted that, because a solid figure appears to us to retain

the same shape when it is moved about in that portion of space with
which we are acquainted, it does not follow that the figure really does
retain its shape. The changes of shape may be either imperceptible for

those distances through which we are able to move the figure, or if they do
take place we may attribute them to 'physical causes'—to heat, light,

OP magnetism—which may possibly be mere names for variations in the

curvature of our space.

11
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that is, planes, or lines in the same plane, whicli how-

ever far produced will never meet—have a real existence

in our space. This real existence, of which it is clearly

impossible for us to be cognisant, we postulate as a

result built upon our experience of what happens in

a limited portion of space. We may postulate that

the portion of space of which we are cognisant is

practically homaloidal, but we have clearly no right

to dogmatically extend this postulate to all space. A
constant curvature, imperceptible for that portion of

space upon which we can experiment, or even a cur-

vature which may vary in an almost imperceptible

manner with the time, would seem to satisfy all that

experience has taught us to be true of the space in

which we dwell.

But we may press our analogy a step further,

and ask, since our hypothetical worm and fish might

very readily attribute the effects of changes in the

bending of their spaces to changes in their own phy-

sical condition, whether we may not in like fashion be

treating merely as physical variations effects which are

really due to changes in the curvature of our space

;

whether, in fact, some or all of those causes which we
term physical may not be due to the geometrical con-

struction of our space. There are three kinds of

variation in the curvature of our space which we ought

to consider as within the range of possibility.

(i) Our space is perhaps really possessed of a curva-

ture varying from point to point, which we fail to appre-

ciate because we are acquainted with only a small

portion of space, or because we disguise its small varia-

tions under changes in our physical condition which we
do not connect with our change of position. The mind
that could recognise this varying curvature might be
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assumed to know the absolute position of a point. For

such a mind the postulate of the relativity of position

would cease to have a meaning. It does not seem so

hard to conceive such a state of mind as the late

Professor Clerk-MaxweU would have had xis believe.

It would be one capable of distinguishing those so-

called physical changes which are really geometrical

or due to a change of position in space.

(ii) Our space may be really same (of equal curva-

ture), but its degree of curvature may change as a

whole with the time. In this way our geometry based

on the sameness of space would stiU hold good for aU

parts of space, but the change of curvature might

produce in space a successiou of apparent physical

changes.

(iii) We may conceive our space to have everywhere

a nearly uniform curvature, but that slight variations of

the curvature may occur from, point to point, and them-

selves vary with the time. These variations of the

curvature with the time may produce effects which we
not unnaturally attribute to physical causes indepen-

dent of the geometry of our space. We might even go

so far as to assign to this variation of the curvature of

space ' what really happens in that phenomenon which

we term the motion of matter.' •

' This remarkable possibility seems first to have been snggested by
Professor Clifford in a paper presented to the Cambridge Philosophical

Society in 1870 (Mathematical Pafen, p. 21). I may add the folio-wing

remarks : The_ most notable physical quantities vhich vary with position

and time are heat, light, and electro-magnetism. It is these that we ooght

pecaliarly to consider when seeking for any physical changes, which may be

due to changes in the cnrratnre of space. If we snppose the bonndary of

any arbitrary figure in space to be distorted by the variation of space-

curvatnre, there wonld, by analogy from one and two dimensions, be no

change in the volume of the figure arising &om snch distortion. Further,

if we assume as an axiom that soace resists curvature with a resistance



226 THE COMMON SENSE OF THE EXACT SCIENCES.

We Lave introduced these considerations as to the

nature of our space to bring home to the reader the

character of the postulates we make in the exact

sciences. These postulates are not, as too often

assumed, necessary and universal truths ; they are

merely axioms based on our experience of a certain

limited region. Just as in any branch of physical

inquiry we start by making experiments, and basing on

our experiments a set of axioms which form the founda-

tion of an exact science, so in geometry our axioms are

really, although less obviously, the result of experience.

On this ground geometry has been properly termed at

the commencement of Chapter II. a physical science.

The danger of asserting dogmatically that an axiom

based on the experience of a limited region holds

universally will now be to some extent apparent to the

reader. It may lead us to entirely overlook, or when

suggested at once reject, a possible explanation of

phenomena. The hypotheses that space is not homa-

loidal, and again, that its geometrical character may
change with the time, may or may not be destined to

play a great part in the physics of the future
;
yet we

cannot refuse to consider them as possible explanations

of physical phenomena, because they m.ay be opposed to

the popular dogmatic belief in the iiniversality of

certain geometrical axioms^a belief which has arisen

from centuries of indiscriminating worship of the

genius of Euclid.

proportional to the change, we find that waves of ' space-displacement ' are

precisely similar to those of the elastic medium which we suppose to propa-

\ gate light and heat. "We also find that ' space-twist ' is a quantity exactly

corresponding to magnetic induction, and satisfying relations similar to

those which hold for the magnetic field. It is a question whether physicists

might not find it simpler to assume that space is capahle of a varying

curvature, and of a resistance to that variation, than to suppose the exist-

ence of a subtle medium pervading an invariable homaloidal space.



CHAPTER V.

MOTION.

§ 1. On the Various Kinds of Motion,

While the chapters on Space and Position considered

the sizes, the shapes, and the distances of things, the

present chapter on Motion will treat of the changes in

these sizes, shapes, and distances, which take place from

time to time.

The difference between the ordinary meaning at-

tached to the word ' change ' in everyday life and the

meaning it has in the exact sciences is perhaps better

illustrated by the subject of this chapter than by any

other that we have yet studied. We attained exactness

Ki the description of quantity and position by substitut-

ing the fliethod of representing them by straight lines

drawn on paper for the method of representing them by
means of numbers ; though this, at first sight, might

easily seem to be a step backwards rather than a step

forwards, since it is more like a child's sign of opening

its arms to show that its stick is so long, than a process

of scientific calculation.

It is, however, by no means an easy thing to give

an accurate description of motion, even although it is

itself as common and familiar a conception as quantity

or position.

Let us take a simple case. Suppose that a man, on a

railway journey, is sitting at one end of a compartment
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with his face towards the engine ; and that, while the

train is going along, he gets np and goes to the other

end of the compartment and sits down with his back to

the engine. For ordinary purposes this description is

amply sufficient, but it is very far indeed from being

an exact description of the motion of the man during

that time. In the first place, the train was moving,

and it is necessary to state in what direction, and how
fast it was going at every instant during the interval

considered. Next, we must describe the motion of the

man relatively to the train ; and, for this purpose, we
must neglect the motion of the train and consider how
the man would have moved if the train had been at

rest. First of all, he changes his position from one

corner of the compartment to the opposite corner

;

next, in doing this he turns round ; and, lastly, as he is

walking along or rising up or sitting down, the size and

shape of many of his muscles are altered. We should

thus have to say, first, exactly how fast and in what

direction he was moving at every instant, as we had to

do in the case of the train ; then, how quickly he w^
turning round ; and, lastly, what changes oT size or

shape were taking place in his muscles, and how fast

they were occurring.

It may be urged that this would be a very trouble-

some operation, and that nobody wants to describe the

motion of the man so exactly. This is quite true ; the

case which has been taken for illustration is not one

which it is necessary to describe exactly, but we can

easily find another case which is very analogous

to this, and which it is most important to describe

exactly. The earth moves round the sun once in every

year ; it is also rotating on its own axis once every day

;

the floating parts of it—the ocean and the air—are
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constantly undergoing changes of shape and state

which we can observe and which it is of the utmost
importance that we should be able to predict and
calculate ; even the solid nucleus of the earth is con-

stantly subject to slight changes in size and shape,

which, however, are not large enough to admit of ac-

curate observation. Here, then, is a problem whose

complexity is quite as great as that of the former, and
whose solution is of pressing practical importance.

The method which is adopted for attacking this

problem of the accurate description of motion is to begin

with the simplest cases. By the simplest cases we mean
those in which certain complicating circumstances do

not arise. We may first of all restrict ourselves to the

study of the motions of those bodies in which there is

no change of size or -shape. A body which preserves

its size and shape unaltered during the interval of time

considered is called a rigid body. The word ' rigid ' is

here used in a technical sense belonging to the science

of dynamic, and does not mean, as in ordinary lan-

guage, a body which resists alteration of size and shape,

but merely a body which, during a certain time,

happens not to be altered in those respects. Then, as the

first and simplest case, we should study that motion of

a rigid body in which there is no turning round, and
in which therefore every line in the body beeps the

same direction (though of course not the same position)

throughout the motion. We state this by saying that

every line ' rigidly connected ' with the body remains

parallel to itself. Such a motion is called a motion of

translation, or simply a translation ; and so the first and

simplest case we have to study is the translation of

rigid bodies. After that we "must proceed to consider

their turning round, or rotation ; and then we have to
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describe the changes of size or shape which bodies may
undergo, these last changes being called strains. The

study of motion therefore requires the further study of

translations, of rotations, and of strains, and further,

the art of combining these together. When we have

studied all this we shall be able to describe motions

exactly ; and then, but not till then, will it be possible

to state the exact circumstances under which motions

of a given kind occur. The exact circumstances under

which motions of a given kind occur we call a law of

nature.

§ 2. Translation and the Curve of Positions.

Let us talk, to begin with, of the translation of a

rigid body.

Suppose a table to be taken from the top to the

bottom of a house in such a manner that the surface of

it is always kept horizontal, and that its length is made

always to point due north and south ; it may be taken

down a staircase of any form, but it is not to be turned

round or tilted up. The table will then undergo a

translation. If we now consider a particular corner of

the table, or the end of one of its legs, or any other

point, this point will have described a certain curve in

a certain manner ; that is to say, at every point of this

curve it will have been going at a certain definite rate.

Now the important property of a motion of translation,

which makes it more easy to deal with than any other

motion, is that for all points of the body this curve is

the same in size and shape and mode of description.

That this is so in the case of the table is at once seen

from the fact that the table is never turned round

nor tilted up during the motion, so that the different

points of it must at any instant be moving in the same
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direction and at the same rate. In order therefore to

describe this motion of the table it will be suf&cient to

describe the motion of any point of it, say the end of

one of its legs. And so, in general, the problem of

describing the motion of translation of any rigid body

is reduced to the problem of describing the motion of

a point along a curve.

Now this is a very much easier task than our

original problem of describing the motion of the earth

or the motion of the man in the train ; but we shall

see that, by properly studying this, it will be easy to

build up out of it other more complicated cases. Still,

even in this form our problem is not quite simple

enough to be directly attacked. What we have to do,

it must be remembered, is to state exactly where a

certain point was, and how fast it was going at every

instant of time during a certain interval. This would

require us first to describe exactly the shape of the

curve along which the point moved ; next, to say how
far it had travelled along the curve from the beginning

up to any given instant ; and lastly, how fast it was

going at that instant. To deal with this problem we
must first take the very simplest case of it, that, namely,

in which the point moves along a straight line, and

leave for the present out of account any description of

the rate of motion of the point ; so that we have only

to say where the point was on a cei-tain straight line

at every instant of time within a given interval.

But we have already considered what is the best way
of describing the position of a point upon a straight

line. It is described by means of the step which is

.required to carry it to that position from a certain

standard place, viz. a step from that place so far to the

right or to the left. To specify the length of the step.
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if we are to describe it exactly, we must not make use

of any words or numbers, but must draw a line wbich

will represent the length corresponding to every instant

of time within a certain interval, so that we may
always be able to answer the question, Where was

the point at this particular instant ? But a question,

in order to be exactly answered, must first be exactly

asted ; and to do this it is necessary that the instant

of time about which the question is asked should be

accurately specified.

Now time, like length, is a continuous quantity

which cannot in general be described by words or

numbers, but can be by the drawing of a line which shall

represent it to a certain scale. Suppose, then, that the

interval of time during which the motion of a point has

to be described is the interval from twelve o'clock to

one o'clock. We must mark on a straight line a point

to represent twelve o'clock and another point to repre-

sent one o'clock; then every instant between twelve

o'clock and one o'clock will be represented by a point

which divides the distance between these two marked

points in the same ratio in which that instant divides

the interval between twelve o'clock and one o'clock.

Then for every one of these points it is necessary to

assign a certain length, representing (to some definite

scale) the distance which the point has travelled up to

that instant ; and the question arises. In what way shall

we mark down these lengths ?

Let us first of all observe the difficulty of answering

this question. If we could be content with an approxi-

mate solution instead of an exact one, we might make
a table and put down in inches and decimals of an inch

the distances travelled, making an entry for every

minute, or even perhaps for every second during the
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hour. Sucli tables are in fact constructed and pub-

lished in the ' Nautical Almanac ' for the positions of the

moon and of the planets. The labour of making this

table will evidently depend upon its degree of minute-

ness ; it will of course take sixty times as long to make
a table showing the position of the point at every

second as to make one showing the position at every

minute, because there will be sixty times as many
values to calculate. But the problem of describing

exactly the motion of the point requires us to make a

table showing the position of the point at every instant

;

that is, a table in which are entered an infinite number

of values. These values moreover are to be shown, not

in inches and decimals of an inch, but by lengths drawn

upon paper. Yet we shall find that this pictorial mode of

constructing the table is in most cases very much easier

than the other. We have only to decide where we shall

put the straight lines which represent the distances

that the point has travelled at different instants.

Fl&. 92.

Let a 6 be the length which represents the interval

of time from twelve o'clock to one o'clock, and let m be

the point representing any intermediate instant. Then
if we draw at m a line perpendicular to a 6 whose length

shall represent (to any scale that we may choose) the

distance that the point has up to this instant travelled,

then p, the extremity of this line, will correspond to
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an entry in our table. But if such lines be drawn

perpendicular to a 6 from every point in it, all the

points p, which are the several extremities of these

lines, will lie upon some curve ; and this curve will re-

present an infinite number of entries in our table. For,

when once the curve is drawn, if a question is asked :

What was the position of the point at any instant

between twelve o'clock and one o'clock ? (this instant

being specified in the right way by marking a point

between a, and h which divides that line in the same

ratio as the given instant divides the hour), then the

answer to this question is obtained simply by drawing

a line through the marked point perpendicular to a &

until it meets the curve ; and the length of that line

will represent, to the scale previously agreed upon, the

distance travelled by the point.

Such a curve is called the curve of positions for a

given motion of the point ; and we arrive at this result,

that the proper way of specifying exactly a translation

along a straight line is to draw the curve of positions.

We have now learned to specify, by means of a

curve, the positions of a body which has motion of

translation along a straight line; and we have not

only represented an infinite number of positions in-

stead of a finite number, which is all a numerical table

wotdd admit, but have also represented each position

with absolute exactness instead of approximately. It

is important to notice that in this and in all similar

cases the exactness is ideal and not practical; it Is

exactness of conception and not of actual measurement.

For though it is not possible to measure a given length

and to state that measure any more accurately by

drawing a line than it is by writing it down in inches

and decimals of an inch, yet the representation by
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means of a Hue enables us to reason upon it witli an
exactness which would be impossible if we were re-

stricted to numerical measurement.

§ 3. Uniform Motion.

Hitherto we have supposed our point to be moving

along a straight line, but were it to move along a curve

the construction given for the curve of positions would

still hold good, only the distance traversed at any

instant must now be measured from some standard

position along the curve. Hence any motion of a point,

or any motion of translation whatever, can be specified

by a properly drawn curve of positions, and the problem

of comparLng and classifying different motions is there-

fore reduced to the problem of comparing and classi-

fying curves. Here again it is advisable and even

necessary to begin with a simple case. Let us take

the case of uniform motion, in which the body passes

over equal distances in equal times ; and then, as we
may easily see, the curve of positions is a straight line.

Uniform motion may also be described as that in which

a body always goes at the same rate, and not quicker

at one time and slower at another. It is obvious that

in this case any two equal distances would require equal

timeS^for traversing them, so that the two descriptions

of uniform motion are equivalent.

It was shown by Archimedes (the proof is an easy

one, depending upon the definition of the fourth pro-

portional) that whenever equal distances are traversed

in equal times, different distances will be traversed in

times proportional to them. Assuming this proposition,

it becomes clear that the curve of positions must be a

straight line, for a straight line is the only curve which
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has the property that the height of every point of it is

proportional to its horizontal distance from a fixed

straight line.

We n)ay also see in the following manner the con-

nection between the straight line and uniform motion.

Suppose we walk up a hill so as always to get over

a horizontal distance of four miles in an hour. The
rate at which we go up will clearly depend on the steep-

ness of the hill ; and if the hill is a plane, i.e. is of the

same steepness all the way up, then our rate of ascent

will be the same at every instant, or our upward motion

will be uniform. If the hill be four miles long and

one mile high, then, since the four miles of horizontal

distance will be traversed in an hour, the one mile of

vertical distance will also be traversed in an hour, and

we shall be gaining height at the uniform rate of One

mile an hour. If the hill were two miles high, or, as we

say twice as steep, then we should have been gaining

height at the rate of two miles an hour. But now if

we suppose a hill of varying steepness, so that the out-

line of it seen from one side is a curve, then it is clear
,

that the rate at which we go up will depend upon the

part of the hill where we are, assuming that the rate at

which we go forward horizontally remains always the

same. This ' elevation ' of the hill may be taken as the

curve of positions for our vertical motion; fit the

horizontal distance that we have gone over, being

always proportional to the time, may be taken to repre-

sent the time, and then the curve will have been con-

structed according to our rule, viz. a horizontal dis-

tance will have been taken proportional to the time

elapsed, and from the end of this line a perpendicular

will have been raised indicating the height which we

have risen in that time. Uniform motion then has
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for its curve of positions a straight line, and the rate

of the motion depends on the steepness of the line.

Variable motion, on the other hand, has a carved line

for its curve of positions, and the rate of motion

depends upon its varying steepness.

In the case of uniform motion it is very easy indeed

to understand what we mean by the rate of the motion.

Thus, if a man walks uniformly six miles an hour,

we know that he walks a mile in ten minutes, and the

tenth part of a mile in one minute, and so on in propor-

tion. It may not, however, be possible to specify this

rate by means of numbers ; that is to say, the man may
not walk any definite number of miles in the hour, and

the exact distance that he walks may not be capable of

representation in terms of miles and fractions of a mile.

In that case we shall have to represent the velocity or

rate at which the man walks in much the same way as

we have represented other continuous quantities. We
must draw to scale upon paper a line representing the

length that he has walked in an hour, or a minute, or

any other interval of time that we decide to select

;

thus, for example, a uniform rate of walking might be

specified by marking points corresponding to particular

hours upon an Ordnance map. The rate of motion, or

velocity, is then a continuous quantity which can be

exactly specified, as we specify other continuous quan-

tities, but which can be only approximately described by

means of numbers.

§ 4. Variable Motion.

Let us now suppose that the motion is not uniform,

and inquire what is meant in that case by the rate at

which a body moves.
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A train, for example, starts from a station and in

tlie course of a few minutes gets up to a speed of 30

miles an hour. It began by being at rest, and it ends by

having this large velocity. What has happened to it in

the meantime? We can understand already in a rough

sort of way what is meant by saying that at a certain

time between the two moments the train must have been

going at 15 miles an hour, or at any other intermediate

rate ; but let us endeavour to make this conception a

little more exact. Suppose, then, that a second train,

which is indefinitely long, is moving in the same direction

at a uniform rate of 15 miles an hour on a pair of rails

parallel to that on which the first train moves ; thus,

when our first train is at rest the second one will appear

to move past it at the rate of 15 miles an hour. When
the first train starts an observer seated in it will see

the second train going apparently rather more slowly

than before, but it will still seem to be moving forwards.

As the first train gets up its speed, this apparent

forward motion will gradually decrease until the second

train will appear to be going so slowly that conversation

may be held between the two ; this will take place when
the rate of the first train has amounted to something

nearly but not quite equal to 15 miles an hour, which

we supposed to be the constant rate of the second train.

But as the rate of the first train continues to increase

there will come a certain instant at whichthe second train

will appear to stop gaining upon the first and to begin

to lose. At that particular instant it will be neither

gaining nor losing, but will be going at the same rate

;

at that particular instant, therefore, we must say that

the first train is going at the rate of 15 miles an
hour. And it is at that instant onlj', for the equality

of the rates does not last for any fraction of a second.
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liowever small; the very instant that the second train

appears to stop gaining it also appears to begin losing.

The two trains then run exactly together for no distance

at all, not even for the smallest fraction of an inch,

and yet we have to say that at one particular instant

our first train is going at the rate of 15 miles an hour,

although it does not continue to go at that rate during

the smallest portion of time. There is no way of

measuring this instantaneous velocity except that which

has just been described of comparing the motion with a

uniform motion having that particular velocity.

Upon this we have to make the very important

remark that the rate at which a body is going is a

property as purely instantaneous as is the precise

position which it has at that instant. Thus, if a stone

be let fall to the ground, at the moment that it hits

the ground it is going at a certain definite rate ; and yet

at any previous moment it was not going so fast, since

it does not move at that rate for the smallest fraction of

a second. This consideration is somewhat difficult to

grasp thoroughly, and in fact it has led many people to

reject altogether the hypothesis of continuity ; but still

we may be helped somewhat in understanding it by
means of our study of the curve of positions, wherein

we saw that to a uniform motion corresponds a straight

line and that the rate of the motion depends on the

steepness of the line.

Let us now suppose a motion in which a body goes

at a very slow but uniform rate for the first second,

during the next second uniformly but somewhat faster,

. faster again during the third second, and so on. The

curve of positions will then be represented by a series

of straight lines becoming steeper and steeper and form-

ing part of a polygon. Prom a sufficient distance off
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this polygon will look like a curved line ; and if, instead

of taking intervals of a second during which the rates

of motion are severally considered uniform, we had

taken intervals of a tenth of a second, then the polygon

would look like a curved line without our going so far

away as before. Tor the shorter the lengths of the sides

of our polygon, the more will it look curved, and if the

intervals of time are reduced to one-tenth the sides

will be only one-tenth as long. The rate at which the

body under consideration is moving when it is in the

position to which any point of the polygon corresponds,

is obtained by prolonging that side of the polygon

which passes through the point; the rate will then

depend on the steepness of this line, since, where the

line is a side of the polygon, it represents the uniform

motion which the body has during a certain interval.

When the polygon looks like a curve the sides are very

short, and any side, being prolonged both ways, will

look like a tangent to the curve.

Now in considering the general case of varying

motion we should have, instead of the above polygon

which looks like a curve, an actual curve ; the difference

between them being that, if we look at the curve-like

polygon with a sufficiently strong microscope, we shall

be able to see its angles, but however powerful a micro-

scope we may apply to the curve it will always look like

a curve. But there is this property in common, that if

we draw a tangent to the curve at any point, then, since

the steepness of this tangent will be exactly the same as

the steepness of the curve at that particular point, it will

give the rate for the motion represented by the curve, just

as before the steepness of the prolonged small side of the

polygon gave the rate for the motion represented by the

polygon. That is to say, the instantaneous velocity of
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a body in any position may be learnt from its curve of

positions by drawing a tangent to this curve at the point

corresponding to the position; for the steepness of this

tangent -will give us the velocity or rate which we want,

since the tangent itself corresponds to a uniform

motion of the same velocity as that belonging to the

given varying motion at the particular instant. Trom
this means of representing the rate we can see how it

is that the instaintaneous velocity of a body generally

belongs to it only at an instant and not for any length

of time however short ; for the steepness of the curve

is continually changing as we go from one part of it

to another, and the curve is not straight for any portion

of its length however small.

The problem of determining the instantaneous ve-

locity in a given position is therefore reduced to the

problem of drawing a tangent to a given curve. We
have a sufficiently clear general notion of what is meant

by each of these things, but the notion which is suf-

ficient for purposes of ordinary discourse is not sufl&cient

for the purposes of reasoning, and it must therefore be

made exact. Just as we had to make our notion of

the ratio of two quantities exact by means of a definition

of the fourth proportional, or of the equality of two

ratios which were expressed in terms of numbers, so

here we shall have to make our idea of a velocity

exact by expressing it in terms of measurable quan-

tities which do not change.

We have no means of measuring the instantaneous

velocity of a moving body ; the only thing that we can

measure is the space which it traverses in a given interval

of time. In the case in which a body is moving uni-

formly, its instantaneous velocity, being always the same,

ia completely specified as soon as we know how far
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the body has gone in a definite time. And, as we
have already observed, the result is the same whatever

this interval of time may be ; the rate of four miles an

hour is the same as eight miles in two hours, or two

miles in half an hour, or one mile in a quarter of an

hoiir. But if a body be moving with a velocity which

is continually changing, the knowledge of how far it has

gone in a given interval of tim6 tells us nothing about

the instantaneous velocity for any position during that

interval. To say, for instance, that a man has

travelled a distance of four miles during an hour, does

not give us any information about the actual rate at

which he was going at any moment during the hour,

unless we know that he has been going at a uniform

rate. Still we are accustomed to say that in such

a case he must have been going on an average at the

rate of four miles an hour; and, as we shall find it

useful to speak of this rate as an ' average velocity,'

its general definition may be given as follows :

—

If a body has gone over a certain distance in a

certain time its mean or average velocity is that with

which, if it travelled uniformly, it would get over the

same distance in the same time.

This mean velocity is very simply represented by

the help of the curve of positions. Let a and b be two

points on the curve of positions; then the mean
velocity between the position represented by a and that

represented by h is given by the steepness of the

straight line a b. This, moreover, enables us to make

some progress towards a method of calculating instan-

taneous velocity, for we showed that the problem of

finding the instantaneous velocity of a body is, in the

above method of representation, the problem of draw-

ing a tangent to a curve. Now the mean velocity of a
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body is defined in terms of quantities which we are

already able to measure, for it requires the measure-
ment of an interval of time and of the distance

traversed during that interval ; and further the chord

of a curve, i.e. the line joining one point of it to another.

FiS. 93.

is a line which we are able to draw. If then we can

find some means of passing from the chord of a curve

to the tangent, the representation we have adopted will

help us to pass from the mean to the instantaneous

velocity.

§ 5. Ow the Tangent to a Curve.

Now let us suppose the chord a h joining the

points on the curve to turn round the point a, which

remains fixed; then b will travel along the curve

Fig.

towards a ; and if we suppose b not to stop in this

motion until it has got beyond a to a point such as b

on the other side, the chord will have turned round

into the position a V. Now, looking at the curve which
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is drawn in the figure, we see that the tangent to the

curve at a obviously lies between a h and h' a. Thus if

a b turn round a so as to move into the position a V it will

at some instant have to pass over the position of the

tangent. At the instant when it passes over this

position where is the point h ? We can at once see

from the figure that it cannot be anywhere else than at

a, and yet we cannot attach any definite meaning to a

line described as joining two coincident points. If we
could, the determination of the tangent would be very

easy, for in order to draw the tangent to the curve at

a, we should merely say, Take any other point 6 on the

curve
;
join a & by a straight line ; then make h travel

along the curve towards a, and the position of the line

a h when h has got to a is that of the tangent at a.

Here however arises the difl&culty which we have already

pointed out, namely, that we cannot form any distinct

conception of a line joining two coincident points;

two separate points are necessary in order to fix a

straight line. But it is clear that, although it is not

yet satisfactory, there is still something in the defini-

tion that is useful and correct; for if we make the

chord turn from the position a 6 to the position of the

tangent at a, the point h does during this motion move

along the curve up to the point a.

This difficulty was first cleared up and its explana-

tion made a matter of common sense by Newton. The
nature of his explanation is as follows :—Let us for

simplicity take the curve to be a circle. If a straight

stick be taken and bent so as to become part of a

circle, the size of this circle will depend upon the

amount of bending. The stick may be bent completely

round until the ends meet, and then it will make a very

small circle ; or it may be bent very slightly indeed, and
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then it will become part of a very large circle. Now,
conversely, suppose that we begin with a small circle,

and, holding it fast at one point, make it get larger

and larger, so that the piece we have hold of gets less

and less bent ; then, as the circle becomes extremely

large, any small portion of it will more and more
nearly approximate to a straight line. Hence a circle

possesses this property, that the more it is magnified

the straighter it becomes ; this property likewise be-

longs to all the curves which we require to consider.

It is sometimes expressed by saying that the curve is

straight in its elements, or in its smallest parts ; but

the statement must be understood to mean only this,

that the smaller the piece of a curve is taken the

straighter it will look when magnified to a given

length.

Now let us apply this to the problem of determining

the position of a tangent. Let us suppose the tan-

gent a f of a circle to be already drawn, and that a

Fig. 95.

certain convenient length is marked off upon it ; from

the end of this T let a perpendicular be drawn to meet

the circle in B, and let a be joined to B by a straight

line. We have now to consider the motion of the point

B along the circle as the chord a J5 is turning round

a towards the position a T ; and the difiBculty in our way

is clearly that figures like aBT get small, as for ex-

ample alt, and continue to decrease until they cease

to be large enough to be definitely observed. Newton
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gets over tliis difficulty by supposing that the figure is

always magnified to a definite size ; so that instead

of considering the smaller figure abt we magnify it

throughout until a i is equal to the original length a T.

But the portion ab of the circle with which we are now

concerned is less than the former portion a B ; conse-

quently when it is magnified to the same length (or

nearly so) it must appear straighter. That is to say, in

the new figure a h' T, which iaaht magnified, the point h

will be nearer to the point T than B in the old one aBT;
consequently, also, as h moves along to a the chord a b

will get nearer to the tangent a T, or, what is the same

thing, the angle tab will get smaller. This last result

is clear enough, because, as we previously supposed, the

chord a 6 is always turning round towards the. position

at.

But now the important thing is that, by taking b

near enough to a, we can mate the curve in the magni-

fied figure as straight as we please ; that is to say, we

Fl». 96.

can make b' approach as near as we like to T.- If we
were to measure off from T perpendicularly to a T any

length, however small, say T d, then we can always

draw a circle which shaU have a T for a tangent and

which shall pass between T and d ; and, further, if

we like to draw a line a d making a very small angle

with a T, then it will still be possible to make b go so

close to a that in the magnified figure the angle b'aT

shall be smaller than the angle daT which we have

drawn.

Now mark what this process, which has been called
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Newton's microscope, really means. While the figure

which we wish to study is getting smaller and smaller,

and finally disappears altogether, we suppose it to be

continually magnified, so as to retain a convenient size.

We have one point moving along a curve up towards

another point, and we want to consider what happens

to the line joining them when the two points approach

indefinitely near to one another. The result at which

we have arrived by means of our microscope is that,

by taking the points near enough together, the line

may be made to approach as near as we please to the

tangent to the curve at the point a. This, therefore,

gives us a definition of the tangent to a curve in

terms only of measurable quantities. If at a certain

point a of a curve there is a line a t possessing the

property that by taking h near enough to a on the curve

the line a b can be brought as near as we like to at

(that is, the angle bat made less than any assigned

angle, however small), then at is called the tangent to

the curve at the point a. Observe that all the things

supposed to be done in this definition are things which

we know can be done. A very small angle can be

assigned; then, this angle being drawn, a position of

the point 6 can be found which is such that a b makes

with a i an angle smaller than this. A supposition is

here made in terms of quantities which we already

know and can measure. We only suppose in addition

that, however small the assigned angle may be, the

point 6 can always be found; and if this is possible,

then in the case in which the assigned angle is ex-

tremely small, the line ab or at (for they now coin-

cide) is called a tangent.

It is worth while to observe the likeness between

this definition and the one that we previously discussed

12
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of the fourth proportional or of the equality of ratio.

In that definition we supposed that, a certain fraction

being assigned, if the first ratio were greater than this

fraction, so also was the second ratio, and if less, less

;

and the question whether these ratios were greater or less

is one that can he settled by measurement and com-

parison. We then made the further supposition that

whatever fraction were assigned the same result would

hold good; and we said that in that case the ratios

were equal. Now in both of these definitions, applying

respectively to tangents and to ratios, the difl&culty is

that we cause a particular supposition to be extended

so as to be general ; for we assume that a statement

which can be very easily tested and found true in any

one case is true in an infinite number of cases in which

it has not been tested. But although the test cannot

be applied individually to all these cases in a practical

way, yet, since it is true in any individual case, we know
on rational grounds that it must be satisfied in general

;

and therefore, justified by this knowledge, we are able

to reason generally about the equality of ratios and

about the tangents to curves.

Let us now translate the definition at which we
have thus arrived from the language of curves and tan-

gents into the language of instantaneous and mean
velocities. The steepness of the chord of the curve of

positions indicates the mean velocity, while the steep-

ness of the tangent to the curve at any point indicates

the instantaneous velocity at that point. The process

of making the point h move nearer and nearer to the

point a corresponds to taking for consideration a

smaller and smaller interval of time after that moment

.

at which the instantaneous velocity is wanted.

Suppose, then, the velocity of a body, viz. a railway
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traiiijto be varying, and tiiatwe want to find what its value

is at a given instant. We might get a very rough approxi-

mation to it, or in some cases no approximation at all, by

taking the mean velocity during the hour which follows

that instant. We should get a closer approximation by

taking the mean velocity during the minute succeeding

that instant, because the instantaneous velocity would

have less time to change. A still closer approximation

would be obtained were we to take the mean velocity

during the succeeding second. In all motions we should

have to consider that we could make the approximation

as close as we like by taking a sufficiently small interval.

That is to say, if we choose to name any very small

velocity, such as one with which a body going uniformly

would move only an inch in a century, then, by taking

the interval small enough, it will be possible to make the

mean velocity differ from the instantaneous velocity by

less than this amount. Thus, finally, we. shall have the

following definition of instantaneous velocity : If there is

a certain velocity to which the mean velocity during the

interval succeeding a given instant can be made to

approach as near as we like by taking the interval small

enough, then that velocity is called the instantaneous

velocity of the body at the given instant.

In this way then we have reduced the problem of

finding the velocity of a moving body at any instant to

the problem of drawing a tangent to its curve of posi-

tions at the corresponding point ; and what we have

already proved amounts to saying that, if the position of

the body be given in terms of the time by means of a

curve, then the velocity of the body will be given in

terms of the time by means of the tangent to this curve.

Now there are many curves to which we can draw

tangents-by simple geometrical methods, as, for example,
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to the ellipse and the parabola ; so that, whenever the

curve of positions of a body happens to be one of these,

we are able to find by geometrical construction the

velocity of the body at anyinstant. Thus in the case

of a falling body the curve of positions is a parabola,

and we might find by the known properties of the tan-

gent to a parabola that the velocity in this case is pro-

portional to the time. But in the great majority of

cases the problem of drawing a tangent to the curve

of positions is just as difficult as the original problem

of determining the velocity of a moving body, and in

fact we do in many cases solve the former by means of

the latter.'

§ 6. On the Determination of Variable Velocity.

What is actually wanted in every case will be

apparent from the consideration of the problem we
have just mentioned—that of a body falling down
straight. We note, from the experience of Galilei, that

the whole distance which the body has fallen from rest

at any instant is proportional to the square of the time

;

in fact, to obtain this distance in feet we must multiply

the number of seconds by itself and the result by a

number a little greater than sixteen. Thus, for instance,

in five seconds the body will have fallen rather more

than twenty-five times sixteen feet, or 400 feet. Now
what we want is some direct process of proving that

when the distance traversed is proportional to the square

of the time the velocity is always proportional to the

time. In the present case we can find the velocity at

the end of a given number of seconds by multiplying

that number by thirty-two feet ; thus at the end of five

seconds the velocity of the body will be 160 feet per

" [The method is due to Soberval (1602-1675).—IC. P.]
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second.' Now as a matter of fact a process (of which
there is a simple example in the footnote) has been
worked out, by which from any algebraical rule telling

us how to calculate the distance traversed in terms of

the time we can find another algebraical rule which
will tell us how to calculate the velocity in terms of the

time. One case of the process is this : If the distance

traversed is at any instant a times the nth power of the

time, then the velocity at any instant will be na times

• The following may be taken as a proof. Let a be the distance from

rest moved over by the body in t' seconds, b that moved over by it mt + t'

seconds, so that t' seconds is the interval we take to find out the mean
Telocity. Now by our rule just quoted, since a feet are passed over in t

seconds, we have

and similarly b = \Q{_t + t')^=\& (rl^ + 2tt' + !!'»).

Hence we have b-a= l%(f + itt'-vt"')-l6t^

= 16(2«' + <'2)

= 16i!'(2if + !!'),

giving the distance moved over in the interval if. But the mean velocity

during this interval is obtained by dividing the distance moved over by the

time taken to traverse it ; hence the mean velocity in our case for the

interval of t' seconds immediately succeeding the t seconds

_b — a
~

t'~

_ i6i;'C2<+ o

= 16(2i! + if)

= 32i; + ]6i!'.

Now if we look at this result, which we have obtained for the mean velocity,

we see that there are two terms in it. The first, viz. %1t, is quite inde-

pendent of the interval t' which we havetaken ; the second, viz. 16i', depends

directly on it, and will therefore change when we change the interval. Now
the distance per second represented by 162' feet can be made as small as

we like by taking t' small enough ; so that the mean velocity during the

interval t seconds succeeding the given instant can be made to approach

ill feet per second as near as we like by taking t' small enough. Eecurring

to our definition of instantaneous velocity, it is now evident that the instan-

taneous velocity of our falling body at the end of t seconds is 32< feet per

second.
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tlie {iv-i)th. power of tbe time. It is by means of this-

process of altering one algebraical rule so as to get

another from it that both of the problems which we
have shown to be equivalent to one another are solved

in practice.

There is yet another problem of very great import-

ance in the study of natural phenomena which can be

made to depend on these two. When a point moves

along a straight line the distance of it from some fixed

point in the line is a quantity which varies from time

to time. The rate of change of this distance is the

same thing as the velocity of the moving point ; and

the rate of change of any continuous quantity can only

be properly represented by means of the velocity of a

point.

Thus, for instance, the height of the tide at a given

port will vary from time to time during the day, and it

may be indicated by a mark which goes up and down
on a stick. The rate at which the height of the tide

varies will obviously be the same thing as the velocity

with which this mark goes up and down. Again the

pressure of the atmosphere is indicated by means of the

height of a mercury barometer. The rate at which this

pressure changes is obviously the same thing as the velo-

city with which the surface ef the mercury moves up and

down. Now whenever we want to describe the changes

which take place in any quantity in terms of the time,

we may indeed roughly and approximately do so by

means of a table. But this is also the most troublesome

way; the proper way of describing them is by drawing

a curve in which the abscissa, or horizontal distance, at

any point represents the time, while the height of the

curve at that point represents the value of the quantity

at that time (see p. 184). Whenever this is done we
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practically suppose the variation of the quantity to be
represented by the motion of the point on a curve.

The quantity can only be adequately represented by
marking off a length proportional to it on a line ; so

that if the quantity varies then the length marked off

will vary, and consequently the end of this length will

move along the curve. The rate at which the quantity

varies is the rate at which this point moves ; and when
the values of the quantity for different times are repre-

sented by the perpendicular distances of points on a

curve from the line which represents the time, its rate

of variation is determined by the tangent to that

curve.

§ 7. On the Method of Fluxions,

Hence we have three problems which are practically

the same. First, to find the velocity of a moving point

when we know where it is at every instant ; secondly, to

draw a tangent to a curve at any point ; thirdly, to find

the rate of change of a quantity when we know how great

it is at every instant. And the solution of them all

depends upon that process by which, when we take the

algebraical rule for finding the quantity in terms of the

time, we deduce from it another rule for finding its

rate of change in terms of the time.

This particular process of deriving one algebraical

rule from another was first investigated by Newton.

He was accustomed to describe a varying quantity as

a fluent, and its rate of change he called the fluxion of

the quantity. On account of these names, the entire

method of solving these problems by means of the

process of deriving one algebraical rule from another

was termed the Method of Fluxions.

In general the rate of variation of a quantity will
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itself change from time to time; but if we consider

only an interval very small as compared with that re-

quired for a considerable variation of the quantity, we
may legitimately suppose that it has not altered much
during that interval. This is practically equivalent to

supposing that the law of change has been uniformly

true during that interval, and that the rate of change

does not differ very much from its mean value. Now
the mean rate of change of a quantity during an interval

of time is just the difference between the values of the

quantity at the beginning and at the end divided by

the interval. If any quantity increased by one inch in

a second, then, although it may not have been increas-

ing uniformly, or even been increasing at all during the

whole of that second, yet during the second its mean
rate of increase was one inch per second. Now if the

rate of increase only changes slowly we may, as an

approximation, fairly suppose it to be constant during

the second, and therefore to be equal to the mean rate
;

and, as we know, the smaller the interval of time is, the

less is the error arising from this supposition. This is,

as a matter of fact, the way in which that process is

established by means of which a rule for calculating

position is altered into a rule for calculating velocity.

The difference between the distances of the movine
point from some fixed point on the line at two different

times is divided by the interval between the times, and
this gives the mean rate of change during that interval.

If we find that, by making the interval smaller and

smaller, this mean rate of change gets nearer and
nearer to a certain value, then we conclude that this

value is the actual rate of change when we suppose the

interval to shrink up into an instant, or that it is, as

we call it, the instantaneous rate of change.
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Because two differences are used in the argument
which establishes the process for changing the one rule

into the other, this process was called, first in other

countries and then also in England, the Differential

Calculus. The name is an unfortunate one, because the

rate of change which is therein calculated has nothing

to do with differences, the only connection with

differences being that they are mentioned in the argu-

ment which is used to establish the process. However
this may be, the object of the differential calculus or of

the method of fluxions (whichever name we choose to

give it) is to find a rule for calculating the rate of

change of a quantity when we have a rule for calcu-

lating the quantity itself; and we have seen that when
this can be done the problem of drawing a tangent to

a curve and that of finding the velocity of a moving

point are also solved,

^ 8. Of the Relationship of Quantities, or Functions.

But we not only have rules for calculating the value

of a quantity at any time, but also rules for calculating

the value of one quantity in terms of another quite in-

dependently of the time. Of the former class of rules an

example is the one mentioned above for calculating the

rise of the tide. We may either write down a formula

which will enable us to calculate it at a given instant,

or we may draw a curve which shall represent its rise

at different times of the day. Of the second kind of

rule a good example is that in which the pressure of a

given quantity of gas is given in terms of its volume

when the temperature is supposed to be constant; the

algebraical statement of the rule giving the relation

between them is that the two things vary inversely as

one another, or that the product representing them is
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constant. Thus if we compress a mass of air to one-

half of its natural volume the pressure wiU become twice

as great, or will be, as it is called, two ' atmospheres.'

And so if we compress it to one-fifth of the volume the

pressure will become five times as great, or five atmo-

spheres.

If" we like to represent this by a figure we shall

draw a curve in which the abscissa, or horizontal

distance from the starting point, will represent the

volume, and a vertical line drawn through the extremity

of this abscissa will represent the pressure. For any

particular temperature the curve traced out by the ex-

tremity of the line representing the pressure will be

a hyperbola having one asymptote vertical and the

other horizontal; and for different temperatures we
shall have different hyperbolas with the same asym-

ptotes. Thus every point in the plane will represent a

particular state of the body, since some hyperbola can

be drawn through it ; the horizontal distance of the

point from the origin will represent the volume, and its

vertical distance the pressure, while the particular

hyperbola on which it lies will indicate the tempera-

ture. We have here an example of the physical im-

portance of a family of curves, to which reference was
made in the preceding chapter (see p. 163).

When the connection between two quantities has

to be found out by actual observation, this is done by

properly plotting down points on paper (as in § 11,

.Chap. lY.) to represent successive observations. Thus
in the case of air the pressure would be observed for

different values of the volume. For each of these

observed pairs of values a point would be marked in

the plane; and when a sufScient number had been

marked it would .. become obvious to the eye that,
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roughly speaking, the point lay on a hyperbolic curve.

But it is to be noticed that it is only roughly that this

result holds, because observations are never so accu-

rate that the curve does not require to be drawn pretty

freely in passing through the points. But directly the

geometer has seen that the shape of the curve is hyper-

bolic he recognises the law that pressure varies inversely

as volume.

We have here the relation between two quantities

expressed by means of a curve. Whenever two quanti-

ties are related in some such way, so that one of them
being given the other can be calculated or found, each

is said to be a function of the other. Now a function

may be supposed to be given either by an algebraical

rule or by a curve. Thus to find the pressure corre-

sponding to a given volume we might say that a certain

number was to be divided by the number representing

the volume, and the result would be the number of units

of pressure ; or we might say that from the given point

of the horizontal line which represented the volume a

perpendicular was to be drawn and continued till it met
the curve, and that the ordinate (or the part of this

between the horizontal line and the curve) represented

the pressure. We have thus a connection established

between the science of geometry and the science of

quantity, as, for example, the relation between the two

quantities, volume and pressure, is expressed by means

of a certain curve.

Now every connection between two sciences is a

help to both of them. When such a connection is

established we may both use the known theorems

about quantities in order to investigate the nature of

curves (and this is, in fact, the method of co-ordinates

introduced by Descartes), or we may mate use of
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known geometrical properties of curves in order to

find out theorems about the way in which quantities

depend upon one another. For the first purpose the

relation between the two quantities is regarded as an

equation. Thus, instead of saying that a pressure

varies inversely as a volume we should prefer to say

that the product of the pressure and the volume is

equal to a certain constant, the temperature being

supposed unaltered; or, paying attention only to the

geometrical way of expressing this, we should say that,

for points along the curve we are considering, the

product of the abscissa and the ordinate is equal to a

certain fixed quantity. This is written for shortness

and from such an equation all the properties of a hyper-

bola may be deduced.

But we may also make use of the properties of

known curves in order to study the ways in which

quantities can depend on one another. Thus the per-
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as it is sometimes called, the sine of tlie arc. If the arc

4P is made proportional to the time, or, what is the

same thing, if P is made to move uniformly round the

circle, then the length of the line PM will represent

the distance from the centre of a point Q oscillating

according to a law which is defined by this geometrical

construction. This particular kind of oscillation, which

is called simple harmonic motion, occurs when the air

is agitated by sound, or the ether by light, or when
any elastic body is set into a tremor. Relations such

as that which we have just mentioned between arcs of

a circle and straight lines drawn according to some

simple constructions in the circle give rise to what are

often termed circular functions. Thus the trigono-

metrical ratios considered in § 7 of Chapter IV. are

functions of this kind. We have also hyperbolic func-

tions, depending on the hyperbola . in somewhat the

same way in which circular functions depend upon the

circle, and elliptic functions, so called because by means
of them the length of the arc of an ellipse can be cal-

culated.

Bat the most valuable method of studying the

properties of functions is derived from the considera-

tions of which we have been treating in this chapter,

viz. considerations of the rate of change of quantities.

When the relation between two quantities is known, the

relation between their rates of change can be found by

a known algebraical process ; and we have shawn that

the problem of finding this relation ultimately comes

to the same thing as the problem of drawing a tangent

to the curve which expresses the relation between the

two original quantities. Thus, in the case we pre-

viously considered of two quantities whose product is

constant or which vary inversely as one another, it is
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clear that one must increase when the other decreases

;

it is found that the ratio of these rates of change

is equal to the ratio of the quantities themselves.

Thus the rate of change of the volume of a gas is

to the rate of change of the pressure (the temperature

being kept constant) as the volume is to the pres-

sure, it being always remembered^ that an increase of

the one implies a decrease of the other.

The consideration of this ratio of the rates of change

is of great importance in determining one of the fun-

damental changeable properties of a body, namely, its

elasticity. We define the elasticity of a gas as the

change of pressure which will produce a given contrac-

tion ; where by the term contraction is meant the change

in the volume divided by the whole volume before change.

Thus if the volume of a gas diminished one per cent., it

would experience a contraction of -^^th. If then, in

accordance with our definition, we divide the pressure

necessary to produce this contraction by
-j-J-g-,

or, what
is the same thing, multiply it by 100, we shall get

what is called the elasticity. Now in our case the change

of pressure divided by the whole pressure is equal to what
we have called the contraction, that is, to -5-^; ^°d
therefore the change of pressure is equal to xooth of the

whole pressure. But we have just proved that the elas-

ticity is 100 times the change of pressure necessary to

produce the contraction we have been considering, and it

is therefore equal to the whole pressure. Consequently

the elasticity of a gas is measured by the pressure of

the gas.

§ 9. 0/" Acceleration and the Hodograph.

We may then consider the rate of change of any
measurable quantity as another quantity which we can
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find ; and we have derived our notion of it from the

velocity of a moving point. In the . simplest case,

when this point is moving along a straight line, the

rate at which it is going is the rate of change of

its distance from a point fixed in the line. But in

the general case, when the point is moving not on a

straight line, but along any sort of curve, we shall not

give a complete description of its state of motion if we

only say how fast it is going ; it will be necessary to

say in addition in what direction it is going. Hence

we must not only measure the quantity of a velocity,

but also a certain quality of it, viz. the direction.

Now we do as a matter of fact contrive to study these

two things together, and the method by which we do so

is perhaps one of the most powerful instruments by

which the scope of the exact sciences has been extended

in recent times. Defining the velocity of a moving

point as the rate of change of its position, we are met

by the question. What is its position ?

This question has been answered in the preceding

chapter. The position of a moving point is determined

when we know the directed step or vector which con-

nects it with a fixed point. If then the velocity of the

moving point means the rate of change of its position,

and if this position is determined by the vector which

would carry us from some fixed point to the moving

point, in order to understand velocity we shall have to

get a clear conception of what is meant by the rate of

change of a vector.

A
Fig. 98.

Let us go back for a moment to the simpler case of

a point moving along a straight line ; its position is
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determined by means of the step A P from the point A
fixed in the straight line to the moving point P. Now
this step alters with the motion of the point ; so that

if the point comes to P' the step is changed from A P
to A P'. How is this change made in the step ?

Clearly by adding to the original step A P the new

step P P', and we specify the velocity of P by saying

at what rate this addition is made.

Now let us resume the general case. We have the

fixed point A given ; and the position of the moving

point P is determined by means of the step A P. As

P moves about, this step gets altered, so that when

P comes to P' this step is AP' ; it is therefore obvious

that it is altered not only in magnitude but also in

direction. Now the change may be made by adding

to the original step A P the new step P P' ; and it is

quite clear that if we go from A to P and then from

P to P' the result is exactly the same as if we had gone

Fig. 99.

directly from A to P'. The question then is : At what

rate does this addition take place, or what step per

second is added to the position? The answer as before

is of the nature of a step or vector—that is, the

change of position of the moving point has not only

magnitude but direction. We shall therefore have

to say that the rate of change of a step or vector is

always so many feet per second in a certain direction.

To sum up, then, we state that the velocity of a
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moving point is the rate of change of the step which

specifies the position ; and that in order to describe

accurately this velocity, we must draw a line of given

length in a given direction; we observe also that

the rate of change of a directed quantity is itself a

directed quantity. This last remark is of the utmost

importance, and we shall now apply it to a considera-

tion of the velocity itself.

If a point is moving uniformly in a straight line its

velocity is always the same in magnitude and the same

in direction ; and consequently a line drawn to re-

present it would be unaltered during the motion. But

if a point moves uniformly round a circle its velocity,

although always the same in magnitude, will be con-

stantly changing in direction, and the line which

specifies this velocity will thus be always of the same

length, but constantly turning round so as always

to keep parallel with the direction of motion of the

moving point. And so, generally, when a point is

moving along any kind of curve let us suppose that

through some other point, which is kept fixed, a line is

always drawn which represents the velocity of the

moving point both in magnitude and direction. Since

the velocity of the moving point will in general change,

this line will also change both in size and in direction,

and the end of it will trace out some sort of curve.

Thus in the case of the uniform circular motion, since

the velocity remains constant, it is clear that the end

of the line representing the velocity will trace out a

circle ; in the case of a body thrown into the air the

end of the corresponding line would be found to de-

scribe a vertical straight line. This curve described

by the end of the line which represents the velocity at

any instant may be regarded as a map of the motion,
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and was for that reason called by Hamilton the

hodograph. If -we know the path of the moving point

and also the hodograph of the motion, we can find the

velocity of the moving point at any particular position

in its path. All we have to do is to draw through the

centre of reference of the hodograph a line parallel to

the tangent to the path at the given position; the

length of this line will give the rate of motion, or the

velocity of the point as it passes through that position

in its path. Hamilton proved that in the case of the

planetary orbits described about the sun the hodo-

graph is always a circle. In this case it possesses

other interesting properties, as, for example, that the

amount of light and heat received by the planet during

a given interval of time is proportional to the length of

the arc of the hodograph between the two points corre-

sponding to the beginning and end of that interval.

But the great use of the hodograph is to give us a

clear conception of the rate of change of the velocity.

This rate of change is called the acceleration. Now, it

must not be supposed that acceleration always means

an increase of velocity, for in this case, as in many
others, mathematicians have adopted for use one word

to denote a change that may have many directions

;

thus a decrease of velocity is called a negative accelera-

tion. This mode of speaking, although rather puzzling

at first, becomes a help instead of a confusion when
one is' accustomed to it. Now a velocity may be

changed in magnitude without altering its direction

—

that is to say, it may be changed by adding it to a

velocity parallel to itself. In this case we say that the

acceleration is in the direction of motion. But a

velocity may also be changed in direction without being

changed in magnitude, and we have seen that then the
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hodograph is a circle. The velocity is altered by
adding to it a velocity perpendicular to itself, for the

tangent at any point to a circle is at right angles to

the radius drawn to that point, and in this case we
may say that the acceleration is at right angles to the

direction of motion. But in general both the magni-

tude and the direction of the velocity will vary, and then

we shall see that the acceleration is neither in the

direction of motion nor at right angles to it, but that

it is in some intermediate direction.

If we consider the motion in the hodcgraph of the

end of the line representing the velocity, we observe the

motion of a point whose position is defined by the step

to it from the centre of the hodograph. Now this step

is just the velocity of the point P in the original curve,

for the line Q is supposed to be drawn at every instant

Fia. 100.

to represent the velocity of P in magnitude and direc-

tion. Now we saw that the rate of change of the step

from some fixed point ^ to P was the velocity of P.

Hence, since the step Q drawn from the fixed point

to Q defines the position of Q, it is obvious that the

rate of change of the step Q is the velocity of Q. Since

Q represents the velocity of P, it follows that the velo-

city of the point Q describing the hodograph is the rate

of change of the velocity of P ; that is to say, it is the

acceleration of the motion of P. This acceleration
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being the velocity of Q, and a velocity being as we have

seen a vector, it at once follows that the acceleration

is a vector or directed quantity.

In changing the magnitude and direction of the

velocity of a moving point we may consider that we are

pouring in, as it were, velocity of a certain kind at a

certain rate. In the case of a stone thrown up
obliquely and allowed to fall again the path described

is a parabola, and the direction of motion, which ori-

ginally pointed obliquely upwards, turns round and

becomes horizontal, and then gradually points more
and more downwards. But what has really been

happening the whole time is that velocity straight

downwards has been continually added at a uniform

rate during every second, so that the original velocity

of the stone is compounded with a velocity vertically

downwards, increasing uniformly at the rate of thirty-

two feet a second. In this case, then, we say that the

acceleration, or rate of change per second of the velocity

of the stone, is constant and equal to thirty-two feet a

second vertically downwards.

If we whirl anything round at the end of a string

we shall be continually pouring in velocity directed

towards the end of the string which is held in the hand

;

and since the velocity of the body which is being

whirled is perpendicular to the direction of the string,

the added velocity is always perpendicular to the exist-

ing velocity of the body. And so also when a planet is

travelling round the sun there is a continual pouring in

of velocity towards the sun, or, as we say, the accelera-

tion is always in the line joining the planet to the sun.

In addition it is in this case found to vary inversely

as the square of the distance from the sun.
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§ 10. On the Laws of Motion.

These examples prepare us to understand that law

of motion which is the basis of all exact treatment of

physics. When a body is moving let us consider what

it is that depends upon the circumstances, meaning

by the * circumstances ' the instantaneous position

' relative to it of other bodies as well as the instantane-

ous state of the body itself irrespective of its motion.

We might at first be inclined to say that the velocity

of the body depends on the circumstances, but very

little reflection will show us that in the same cir-

cumstances a body may be moving with very different

velocities. At a given height above the earth's surface,

for example, a stone may be moving upwards or down-

wards, or horizontally, or at any inclination, and in any

of these modes with any velocity whatever ; and there is

nothing contrary to nature in supposing a motion of this

sort. Yet we should find that, no matter in what way
the stone may move through a given position, the rate

of change per second of its velocity will always be the

same, viz. it will be thirty-two feet per second vertically

downwards. When we push a chair along the ice, in

order to describe the circumstances we must state the

compression of those muscles which keep our hands

against the chair. Now the rate at which the chair

moves does not depend simply upon this compression

;

for a given amount of push may be either starting the

chair from rest or may be quickening it when it is

going slowly, or may be keeping it up at a high rate.

What is it, then, which does depend upon the cir-

cumstances ? In whichever of these ways, or in what-

ever other way this given amount of push is used, its

result in every case is obviously to change the rate of



268 THE COMMON SENSE OF THE EXACT SCIENCES.

motion of the chair; and this change of the rate of

motion will vary with the amount of push. Hence it is

the rate of change of the velocity, or the acceleration of

the chair which depends upon the circumstances, and

these circumstances are partly the compression of our

muscles and partly the friction of the ice ; the one is

increasing and the other is diminishing the velocity in

the direction in which the chair is going.

The law of motion to which allusion has just been

made is this :—The acceleration of a body, or the rate of

change of its velocity depends at any moment upon the

position relative to it of the surrounding bodies, but
not upon the rate at which the body itself is going.

There are two different ways in which this dependence

takes place. In some cases, as when a hand is pushing

a chair, the rate of change of the velocity depends on
the state of compression of the bodies in contact ; in

other cases, as in the motion of the planets about the

sun, the acceleration depends on the relative position

of bodies at a distance.

The acceleration produced in a body by a particular

set of surrounding circumstances must in each case be

determined by experiment, but we have learnt by ex-

perience a general law which much simplifies the expe-

riments which it is necessary to make. This law is as

follows :—If the presence of one body alone produces a

certain acceleration in the motion of a given body, and

the presence of a second body alone another accelera-

tion ; then, if both bodies are present at the same time,

the one has in general no effect upon the acceleration

produced by the other. That is, the total accelera-

tion of the moving body will be the combination of the

two simple accelerations; or, since accelerations are

directed quantities, we have only to combine the simple
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accelerations, as we did vector steps in § 3 of the pre-

ceding chapter, in order to find the result of super-

posing two sets of surrounding circumstances.

Now while this great law of nature simplifies ex-

tremely our consideration of the motion of the same

body under difierent surrounding circumstances, it

does not enable us to state anything as to the motion

of different bodies under the same surrounding circum-

stances. This case, however, is amply provided for by

another comprehensive law which experience also has

taught us. We may thus state this third all-important

law of motion :—The ratio of the accelerations which

any two bodies produce in each other by their mutual

influence is a constant quantity, quite independent of

the exact physical characteristics of that influence.

That is to say, however the two bodies influence one

another, whether they touch or are connected by a

thread or being at a distance still alter one another's

velocities, this ratio will remain in these and all other

cases the same.

§ 11. Of Mass and Force.

Let us see how we can apply this law. Suppose we
take some standard body P and any other Q, and note

the ratios of the accelerations they produce in each

other under any of the simplest possible circumstances

of mutual influence. Let the ratio determined by ex-

periment be represented by m, or m expresses the ratio of

the acceleration of the standard body P to that of the

second body Q. This quantity m is termed the mass

of the body Q. Let m' be the ratio of the accelerations

produced in the standard body P and a third body B by

their mutual influence. Now the law as it stands above

enables us to treat only of the ratio of the accelerations
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of P and Q, or again of P and B under varied cir-

cumstances of mutual influence. It does not tell us

anything about the ratio of the accelerations which Q
and B might produce in each other. Experience, how-

ever, again helps us out of our difficulties and tells us

that if Q and B mutually influence each other, the

ratio of the acceleration of Q to that of B will be in-

versely as the ratio of m to m'. If then we choose to

term unity the mass of our standard body, we may
state generally that mutual accelerations are inversely as

masses. Hence, when we have once determined the

masses of bodies we are able to apply our knowledge

of the effect of any set of circumstances on one body,

to calculate the effect which the same circumstances

would produce upon any other body.

The reader will remark that mass as defined above

is a ratio of accelerations, or in other words a mere

numerical constant experimentally deducible for any

two bodies. It is found that for two bodies of the same

uniform substance, their masses are proportional to

their volumes. This relation of mass to volume has

given rise to muclx obscurity. An indescribable some-

thing termed matter has been associated with bodies.

Bodies are supposed to consist of matter filling space,

and the mass ofa body is defined as the amount of matter

in it. An additional conception termed force has been

introduced and is supposed to be in some way resident in

matter. The force of a body P on a body Q of mass m
is a quantity proportional to the mass m of Q and to

the acceleration which the presence of P produces in

the motion of Q. It will be obvious to the reader that

this conception of force no more explains why the pre-

sence of P tends to change the velocity of Q, than the

conception of matter explains why mutual accelerations

\
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are inversely as masses. The custom of basing our

ideas of motion on these terms ' matter ' and ' force

'

has too often led to obscurity, not only in mathematical,

but in philosophical reasoning. We do not know why

the presence of one body tends to change the velocity

of another ; to say that it arises from the force resident

in the first body acting upon the matter of the moving

body is only to slur over our ignorance. All that we
do know is that the presence of one body may tend

to change the velocity of another, and that, if it does,

the change can be ascertained from experiment, and

obeys the above laws.

To calculate by means of the laws of motion from the

observed effects on a simple body of a simple set of cir-

cumstances the moi'e complex effects of any combina-

tion of circumstances on a complex body or system of

bodies is the special function of that branch of the exact

sciences which is termed Applied Mathematics.

13
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